
Semigroups

Version 2.8.1

J. D. Mitchell
Manuel Delgado

James East
Attila Egri-Nagy
Nicholas Ham
Julius Jonu�as
Markus Pfeiffer
Ben Steinberg
Jhevon Smith
Michael Torpey
Wilf Wilson

J. D. Mitchell Email: jdm3@st-and.ac.uk

Homepage: http://tinyurl.com/jdmitchell

mailto://jdm3@st-and.ac.uk
http://tinyurl.com/jdmitchell

Semigroups 2

Abstract

The Semigroups package is a GAP package containing methods for semigroups, monoids, and inverse semi-

groups, principally of transformations, partial permutations, bipartitions, subsemigroups of regular Rees 0-

matrix semigroups, free inverse semigroups, free bands, and semigroups of matrices over �nite �elds.

Semigroups contains more ef�cient methods than those available in the GAP library (and in many cases

more ef�cient than any other software) for creating semigroups, monoids, and inverse semigroup, calculating

their Green's structure, ideals, size, elements, group of units, small generating sets, testing membership, �nding

the inverses of a regular element, factorizing elements over the generators, and many more. It is also possible

to test if a semigroup satis�es a particular property, such as if it is regular, simple, inverse, completely regular,

and a variety of further properties.

There are methods for �nding congruences of certain types of semigroups, the normalizer of a semigroup in

a permutation group, the maximal subsemigroups of a �nite semigroup, and smaller degree partial permutation

representations and the character tables of inverse semigroups. There are functions for producing pictures of

the Green's structure of a semigroup, and for drawing bipartitions.

Copyright

© 2011-16 by J. D. Mitchell et al.

Semigroups is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 3 of the License, or (at your

option) any later version.

Acknowledgements

I would like to thank P. von Bunau, A. Distler, S. Linton, C. Nehaniv, J. Neubueser, M. R. Quick, E. F. Robert-

son, and N. Ruskuc for their help and suggestions. Special thanks go to J. Araujo for his mathematical sugges-

tions and to M. Neunhoeffer for his invaluable help in improving the ef�ciency of the package.

Manuel Delgado and Attila Egri-Nagy contributed to the functions Splash (4.8.1) and DotDClasses

(4.8.2).

James East, Attila Egri-Nagy, and Markus Pfeiffer contributed to the part of the package relating to bipar-

titions. I would like to thank the University of Western Sydney for their support of the development of this part

of the package.

Nick Ham contributed many of the standard examples of bipartition semigroups.

Julius Jonu�as contributed the part of the package relating to free inverse semigroups, and contributed to

the code for ideals.

Yann Peresse and Yanhui Wang contributed to the function MunnSemigroup (2.5.13).

Jhevon Smith and Ben Steinberg contributed the function CharacterTableOfInverseSemigroup

(4.7.16).

Michael Torpey contributed the part of the package relating to congruences of Rees (0-)matrix semigroups.

Wilf Wilson contributed to the part of the package relating maximal subsemigroups and smaller degree

partial permutation representations of inverse semigroups. We are also grateful to C. Donoven and R. Hancock

for their contribution to the development of the algorithms for maximal subsemigroups and smaller degree

partial permutation representations.

Markus Pfeiffer contributed the majority of the code relating to semigroups of matrices over �nite �elds.

 http://www.fsf.org/licenses/gpl.html
 http://www.fsf.org/licenses/gpl.html

Semigroups 3

We would also like to acknowledge the support of the Centre of Algebra at the University of Lisbon, and

of EPSRC grant number GR/S/56085/01.

Contents

1 The Semigroups package 6

1.1 Introduction . 6

1.2 Installing the Semigroups package . 7

1.3 Compiling the documentation . 8

1.4 Testing the installation . 9

1.5 More information during a computation . 9

1.6 Reading and writing elements to a �le . 10

2 Creating semigroups and monoids 12

2.1 Random semigroups . 12

2.2 New semigroups from old . 14

2.3 Options when creating semigroups . 16

2.4 Changing the representation of a semigroup . 18

2.5 Standard examples . 21

3 Ideals 32

3.1 Creating ideals . 32

3.2 Attributes of ideals . 33

4 Determining the structure of a semigroup 35

4.1 Expressing semigroup elements as words in generators 35

4.2 Creating Green's classes . 37

4.3 Iterators and enumerators of classes and representatives 41

4.4 Attributes and properties directly related to Green's classes 46

4.5 Further attributes of semigroups . 57

4.6 Further properties of semigroups . 73

4.7 Properties and attributes of inverse semigroups . 86

4.8 Visualising the structure of a semigroup . 96

5 Bipartitions and blocks 100

5.1 The family and categories of bipartitions . 101

5.2 Creating bipartitions . 102

5.3 Changing the representation of a bipartition . 104

5.4 Operators for bipartitions . 108

5.5 Attributes for bipartitons . 109

5.6 Creating blocks and their attributes . 115

5.7 Actions on blocks . 116

4

Semigroups 5

5.8 Visualising blocks and bipartitions . 118

5.9 Semigroups of bipartitions . 119

6 Free inverse semigroups and free bands 122

6.1 Free inverse semigroups . 122

6.2 Displaying free inverse semigroup elements . 124

6.3 Operators and operations for free inverse semigroup elements 124

6.4 Free bands . 125

6.5 Operators and operations for free band elements 127

7 Matrix semigroups 128

7.1 Creating matrix semigroups . 128

7.2 Matrices in the Semigroups package . 129

7.3 Matrix groups in the Semigroups package . 133

8 Congruences 135

8.1 Creating congruences . 135

8.2 Congruence classes . 136

8.3 Congruences on Rees matrix semigroups . 137

8.4 Universal congruences . 142

9 Homomorphisms 144

9.1 Isomorphisms . 144

10 Orbits 146

10.1 Looking for something in an orbit . 146

10.2 Strongly connected components of orbits . 147

References 151

Index 152

Chapter 1

The Semigroups package

1.1 Introduction

This is the manual for the Semigroups package version 2.8.1. Semigroups 2.8.1 is a distant descen-

dant of the Monoid package for GAP 3 by Goetz Pfeiffer, Steve A. Linton, Edmund F. Robertson, and

Nik Ruskuc; and the Monoid package for GAP 4 by J. D. Mitchell.

Many of the operations, methods, properties, and functions described in this manual only apply to

semigroups of transformations, partial permutations, bipartitions, subsemigroups of regular Rees 0-

matrix semigroups over groups, semigroups of matrices over �nite �elds, free inverse semigroups, and

free bands. For the sake of brevity, we have opted to say SEMIGROUP to describe the aforementioned

classes of semigroups.

Semigroups 2.8.1 contains more ef�cient methods than those available in the GAP library (and

in many cases more ef�cient than any other software) for creating semigroups and ideals, calculating

their Green's structure, size, elements, group of units, minimal ideal, and testing membership, �nding

the inverses of a regular element, and factorizing elements over the generators, and many more; see

Chapters 2, 3, and 4. There are also methods for testing if a semigroup satis�es a particular property,

such as if it is regular, simple, inverse, completely regular, and a variety of further properties; see

Chapter 4. The theory behind the main algorithms in Semigroups will be described in a forthcoming

article.

It is harder for Semigroups to compute Green's L - and H -classes of a transformation semi-

group. The methods used to compute with Green's R- and D-classes are the most ef�cient in Semi-

groups. Thus, if you are computing with a transformation semigroup, wherever possible, it is advis-

able to use the commands relating to Green'sR- orD-classes rather than those relating to Green'sL -

orH -classes. No such dif�culties are present when computing with semigroups of partial permuta-

tions, bipartitions, subsemigroups of a regular Rees 0-matrix semigroup over a group, or semigroups

of matrices over a �nite �eld.

The methods in Semigroups allow the computation of individual Green's classes without com-

puting the entire data structure of the underlying semigroup; see GreensRClassOfElementNC (4.2.3).

It is also possible to compute the R-classes, the number of elements and test membership in a semi-

group without computing all the elements; see, for example, GreensRClasses (4.3.1), RClassReps

(4.3.4), IteratorOfRClassReps (4.3.2), IteratorOfRClasses (4.3.3), or NrRClasses (4.4.6).

This may be useful if you want to study a very large semigroup where computing all the elements

of the semigroup is not feasible.

There are methods for �nding: congruences of certain types of semigroups (based on Section 3.5

6

 http://schmidt.nuigalway.ie/monoid/index.html

Semigroups 7

in [How95]), the normalizer of a semigroup in a permutation group (as given in [ABMN10]), the

maximal subsemigroups of a �nite semigroup (based on [GGR68]), smaller degree partial permuta-

tion representations (based on [Sch92]) and the character table of an inverse semigroup. There are

functions for producing pictures of the Green's structure of a semigroup, and for drawing bipartitions;

see Sections 4.8 and 5.8.

Several standard examples of semigroups are provided see Section 2.5. Semigroups also provides

functions to read and write collections of transformations, partial permutations, and bipartitions to a

�le; see ReadGenerators (1.6.2) and WriteGenerators (1.6.3).

Details of how to create and manipulate semigroups of bipartitions can be found in Chapter 5.

Details of how to create and manipulate semigroups of matrices over a �nite �eld can be found in

Chapter 7.

There are also functions in Semigroups to de�ne and manipulate free inverse semigroups and

their elements; this part of the package was written by Julius Jonu�as; see Chapter 6 and Section 5.10

in [How95] for more details.

Semigroups contains functions synonymous to some of those de�ned in theGAP library but, for

the sake of convenience, they have abbreviated names; further details can be found at the appropriate

points in the later chapters of this manual.

Semigroups contains different methods for some GAP library functions, and so you might no-

tice that GAP behaves differently when Semigroups is loaded. For more details about semigroups

in GAP or Green's relations in particular, see (Reference: Semigroups) or (Reference: Green's

Relations).

The Semigroups package is written GAP code and requires the Orb and IO packages. The Orb

package is used to ef�ciently compute components of actions, which underpin many of the features

of Semigroups. The IO package is used to read and write transformations, partial permutations, and

bipartitions to a �le.

The Grape package must be loaded for the operation SmallestMultiplicationTable (9.1.2) to

work, and it must be fully compiled for the following functions to work:

� MunnSemigroup (2.5.13)

� MaximalSubsemigroups (4.5.7)

� IsIsomorphicSemigroup (9.1.1)

� IsomorphismSemigroups (9.1.3).

If Grape is not available or is not compiled, then Semigroups can be used as normal with the excep-

tion that the functions above will not work.

The genss package is used in one version of the function Normalizer (4.5.23) but nowhere else

in Semigroups. If genss is not available, then Semigroups can be used as normal with the exception

that this function will not work.

Some further details about semigroups in GAP and Green's relations in particular, can be found

in (Reference: Semigroups) and (Reference: Green's Relations).

If you �nd a bug or an issue with the package, then report this using the issue tracker.

1.2 Installing the Semigroups package

In this section we give a brief description of how to start using Semigroups.

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
https://github.com/gap-packages/Semigroups/issues

Semigroups 8

It is assumed that you have a working copy of GAP with version number 4.8.8 or higher. The

most up-to-date version of GAP and instructions on how to install it can be obtained from the main

GAP webpage http://www.gap-system.org.

The following is a summary of the steps that should lead to a successful installation of Semi-

groups:

� ensure that the IO package version 4.4.4 or higher is available. IO must be compiled before

Semigroups can be loaded.

� ensure that the Orb package version 4.7.3 or higher is available. Orb and Semigroups both

perform better if Orb is compiled.

� THIS STEP IS OPTIONAL: certain functions in Semigroups require the Grape package to be

available and fully compiled; a full list of these functions can be found above. To use these

functions make sure that the Grape package version 4.5 or higher is available. If Grape is not

fully installed (i.e. compiled), then Semigroups can be used as normal with the exception that

the functions listed above will not work.

� THIS STEP IS OPTIONAL: the non-deterministic version of the function Normalizer (4.5.23)

requires the genss package to be loaded. If you want to use this function, then please ensure

that the genss package version 1.5 or higher is available.

� download the package archive semigroups-2.8.1.tar.gz from the Semigroups package

webpage.

� unzip and untar the �le, this should create a directory called semigroups-2.8.1.

� locate the pkg directory of your GAP directory, which contains the directories lib, doc and so

on. Move the directory semigroups-2.8.1 into the pkg directory.

� start GAP in the usual way.

� type LoadPackage("semigroups");

� compile the documentation by using SemigroupsMakeDoc (1.3.1).

Presuming that the above steps can be completed successfully you will be running the Semigroups

package!

If you want to check that the package is working correctly, you should run some of the tests

described in Section 1.4.

1.3 Compiling the documentation

To compile the documentation use SemigroupsMakeDoc (1.3.1). If you want to use the help system,

it is essential that you compile the documentation.

1.3.1 SemigroupsMakeDoc

. SemigroupsMakeDoc() (function)

Returns: Nothing.

This function should be called with no argument to compile the Semigroups documentation.

http://www.gap-system.org
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
https://gap-packages.github.io/Semigroups
https://gap-packages.github.io/Semigroups

Semigroups 9

1.4 Testing the installation

In this section we describe how to test that Semigroups is working as intended. To test

that Semigroups is installed correctly use SemigroupsTestInstall (1.4.1) or for more ex-

tensive tests use SemigroupsTestAll (1.4.3). Please note that it will take a few seconds for

SemigroupsTestInstall (1.4.1) to �nish and it may take several minutes for SemigroupsTestAll

(1.4.3) to �nish.

If something goes wrong, then please review the instructions in Section 1.2 and ensure that Semi-

groups has been properly installed. If you continue having problems, please use the issue tracker to

report the issues you are having.

1.4.1 SemigroupsTestInstall

. SemigroupsTestInstall() (function)

Returns: Nothing.

This function should be called with no argument to test your installation of Semigroups is work-

ing correctly. These tests should take no more than a fraction of a second to complete. To more

comprehensively test that Semigroups is installed correctly use SemigroupsTestAll (1.4.3).

1.4.2 SemigroupsTestManualExamples

. SemigroupsTestManualExamples() (function)

Returns: Nothing.

This function should be called with no argument to test the examples in the Semigroups

manual. These tests should take no more than a few minutes to complete. To more compre-

hensively test that Semigroups is installed correctly use SemigroupsTestAll (1.4.3). See also

SemigroupsTestInstall (1.4.1).

1.4.3 SemigroupsTestAll

. SemigroupsTestAll() (function)

Returns: Nothing.

This function should be called with no argument to comprehensively test that Semigroups is

working correctly. These tests should take no more than a few minutes to complete. To quickly test

that Semigroups is installed correctly use SemigroupsTestInstall (1.4.1).

1.5 More information during a computation

1.5.1 InfoSemigroups

. InfoSemigroups (info class)

InfoSemigroups is the info class of the Semigroups package. The info level is initially set

to 0 and no info messages are displayed. We recommend that you set the level to 1 so that basic

info messages are displayed. To increase the amount of information displayed during a computation

increase the info level to 2 or 3. To stop all info messages from being displayed, set the info level to

0. See also (Reference: Info Functions) and SetInfoLevel (Reference: SetInfoLevel).

https://github.com/gap-packages/Semigroups/issues

Semigroups 10

1.6 Reading and writing elements to a �le

The functions ReadGenerators (1.6.2) and WriteGenerators (1.6.3) can be used to read or write

transformations, partial permutations, and bipartitions to a �le.

1.6.1 SemigroupsDir

. SemigroupsDir() (function)

Returns: A string.

This function returns the absolute path to the Semigroups package directory as a string. The

same result can be obtained typing:

Example
PackageInfo("semigroups")[1]!.InstallationPath;

at the GAP prompt.

1.6.2 ReadGenerators

. ReadGenerators(filename[, nr]) (function)

Returns: A list of lists of semigroup elements.

If filename is the name of a �le created using WriteGenerators (1.6.3), then ReadGenerators

returns the contents of this �le as a list of lists of transformations, partial permutations, or bipartitions.

If the optional second argument nr is present, then ReadGenerators returns the elements stored

in the nr th line of filename .
Example

gap> file:=Concatenation(SemigroupsDir(), "/tst/test.gz");;

gap> ReadGenerators(file, 1378);

[Transformation([1, 2, 2]), IdentityTransformation,

Transformation([1, 2, 3, 4, 5, 7, 7]),

Transformation([1, 3, 2, 4, 7, 6, 7]),

Transformation([4, 2, 1, 1, 6, 5]),

Transformation([4, 3, 2, 1, 6, 7, 7]),

Transformation([4, 4, 5, 7, 6, 1, 1]),

Transformation([7, 6, 6, 1, 2, 4, 4]),

Transformation([7, 7, 5, 4, 3, 1, 1])]

1.6.3 WriteGenerators

. WriteGenerators(filename, list[, append]) (function)

Returns: true or fail.

This function provides a method for writing transformations, partial permutations, and bipartitions

to a �le, that uses a relatively small amount of disk space. The resulting �le can be further compressed

using gzip or xz.

The argument list should be a list of elements, a semigroup, or a list of lists of elements, or semi-

groups. The types of elements and semigroups supported are: transformations, partial permutations,

and bipartitions.

The argument filename should be a string containing the name of a �le where the entries in

list will be written or an IO package �le object.

Semigroups 11

If the optional third argument append is given and equals "w", then the previous content of the

�le is deleted. If the optional third argument is "a" or is not present, then list is appended to the �le.

This function returns true if everything went well or fail if something went wrong.

WriteGenerators appends a line to the �le filename for every entry in list . If any element

of list is a semigroup, then the generators of that semigroup are written to filename .

The �rst character of the appended line indicates which type of element is contained in that line,

the second character m is the number of characters in the degree of the elements to be written, the

next m characters are the degree n of the elements to be written, and the internal representation of

the elements themselves are written in blocks of m*n in the remainder of the line. For example, the

transformations:
Example

[Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]),

Transformation([3, 8, 1, 9, 9, 4, 10, 5, 10, 6])]

are written as:
Example

t210 2 2 6 7 2 6 9 9 1 1 5 3 8 1 9 9 410 510 6

The �le filename can be read using ReadGenerators (1.6.2).

1.6.4 IteratorFromGeneratorsFile

. IteratorFromGeneratorsFile(filename) (function)

Returns: An iterator.

If filename is a string containing the name of a �le created using WriteGenerators (1.6.3), then

IteratorFromGeneratorsFile returns an iterator iter such that NextIterator(iter) returns

the next collection of generators stored in the �le filename .

This function is a convenient way of, for example, looping over a collection of generators in a �le

without loading every object in the �le into memory. This might be useful if the �le contains more

information than there is available memory.

Chapter 2

Creating semigroups and monoids

In this chapter we describe the various ways that semigroups and monoids can be created in Semi-

groups, the options that are available at the time of creation, and describe some standard examples

available in Semigroups.

Any semigroup created before Semigroups has been loaded must be recreated after Semigroups

is loaded so that the options record (described in Section 2.3) is de�ned. Almost all of the functions

and methods provided by Semigroups, including those methods for existing GAP library functions,

will return an error when applied to a semigroup created before Semigroups is loaded.

2.1 Random semigroups

2.1.1 RandomInverseMonoid

. RandomInverseMonoid(m, n) (operation)

. RandomInverseSemigroup(m, n) (operation)

Returns: An inverse monoid or semigroup.

Returns a random inverse monoid or semigroup of partial permutations with degree at most n with

m generators.

Example
gap> S := RandomInverseSemigroup(10, 10);

<inverse partial perm semigroup of rank 10 with 10 generators>

gap> S := RandomInverseMonoid(10, 10);

<inverse partial perm monoid of rank 10 with 10 generators>

2.1.2 RandomTransformationMonoid

. RandomTransformationMonoid(m, n) (operation)

. RandomTransformationSemigroup(m, n) (operation)

Returns: A transformation semigroup or monoid.

Returns a random transformation monoid or semigroup of at most degree n with m generators.

Example
gap> S := RandomTransformationMonoid(5, 5);

<transformation monoid of degree 5 with 5 generators>

gap> S := RandomTransformationSemigroup(5, 5);

<transformation semigroup of degree 5 with 5 generators>

12

Semigroups 13

2.1.3 RandomPartialPermMonoid

. RandomPartialPermMonoid(m, n) (operation)

. RandomPartialPermSemigroup(m, n) (operation)

Returns: A partial perm semigroup or monoid.

Returns a random partial perm monoid or semigroup of degree at most n with m generators.

Example
gap> S:=RandomPartialPermSemigroup(5, 5);

<partial perm semigroup of rank 4 with 5 generators>

gap> S:=RandomPartialPermMonoid(5, 5);

<partial perm monoid of degree 5 with 5 generators>

2.1.4 RandomBinaryRelationMonoid

. RandomBinaryRelationMonoid(m, n) (operation)

. RandomBinaryRelationSemigroup(m, n) (operation)

Returns: A semigroup or monoid of binary relations.

Returns a random monoid or semigroup of binary relations on n points with m generators.

Example
gap> RandomBinaryRelationSemigroup(5,5);

<semigroup with 5 generators>

gap> RandomBinaryRelationMonoid(5,5);

<monoid with 5 generators>

2.1.5 RandomBipartitionSemigroup

. RandomBipartitionSemigroup(m, n) (operation)

. RandomBipartitionMonoid(m, n) (operation)

Returns: A bipartition semigroup or monoid.

Returns a random monoid or semigroup of bipartition on n points with m generators.

Example
gap> RandomBipartitionMonoid(5, 5);

<bipartition monoid of degree 5 with 5 generators>

gap> RandomBipartitionSemigroup(5, 5);

<bipartition semigroup of degree 5 with 5 generators>

2.1.6 RandomMatrixSemigroup

. RandomMatrixSemigroup(R, m, n[, ranks]) (operation)

. RandomMatrixMonoid(R, m, n[, ranks]) (operation)

Returns: A matrix semigroup or monoid.

Returns a random semigroup or monoid of n -by-n matrices over the ring R with m generators.

The optional fourth argument ranks is expected to be a list of permissible ranks for the generators.

For any generator the rank is chosen uniformly randomly from the list of permissible ranks. This

allows for creating more interesting random matrix semigroups and monoids. Without the ranks

argument there is a very high probability that the semigroups returned by this function are full matrix

monoids over the base ring.

Semigroups 14

Example
gap> RandomMatrixSemigroup(GF(25),5,5);

<semigroup of 5x5 matrices over GF(5^2) with 5 generators>

gap> RandomMatrixSemigroup(GF(4),2,5,[1,2]);

<semigroup of 5x5 matrices over GF(2^2) with 2 generators>

2.2 New semigroups from old

2.2.1 ClosureInverseSemigroup

. ClosureInverseSemigroup(S, coll[, opts]) (operation)

Returns: An inverse semigroup or monoid.

This function returns the inverse semigroup or monoid generated by the inverse semigroup S and

the collection of elements coll after �rst removing duplicates and elements in coll that are already

in S . In most cases, the new semigroup knows at least as much information about its structure as was

already known about that of S .

If present, the optional third argument opts should be a record containing the values of the options

for the inverse semigroup being created; these options are described in Section 2.3.

Example
gap> S:=InverseMonoid(

> PartialPerm([1, 2, 3, 5, 6, 7, 8], [5, 9, 10, 6, 3, 8, 4]),

> PartialPerm([1, 2, 4, 7, 8, 9], [10, 7, 8, 5, 9, 1]));;

gap> f:=PartialPerm(

> [1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 18, 19, 20],

> [5, 1, 7, 3, 10, 2, 12, 14, 11, 16, 6, 9, 15]);;

gap> S:=ClosureInverseSemigroup(S, f);

<inverse partial perm semigroup of rank 19 with 4 generators>

gap> Size(S);

9744

gap> T:=Idempotents(SymmetricInverseSemigroup(10));;

gap> S:=ClosureInverseSemigroup(S, T);

<inverse partial perm semigroup of rank 19 with 854 generators>

gap> S:=InverseSemigroup(SmallGeneratingSet(S));

<inverse partial perm semigroup of rank 19 with 14 generators>

2.2.2 ClosureSemigroup

. ClosureSemigroup(S, coll[, opts]) (operation)

Returns: A semigroup or monoid.

This function returns the semigroup or monoid generated by the semigroup S and the collection

of elements coll after removing duplicates and elements from coll that are already in S . In most

cases, the new semigroup knows at least as much information about its structure as was already known

about that of S .

If present, the optional third argument opts should be a record containing the values of the options

for the semigroup being created as described in Section 2.3.

Example
gap> gens:=[Transformation([2, 6, 7, 2, 6, 1, 1, 5]),

> Transformation([3, 8, 1, 4, 5, 6, 7, 1]),

> Transformation([4, 3, 2, 7, 7, 6, 6, 5]),

Semigroups 15

> Transformation([7, 1, 7, 4, 2, 5, 6, 3])];;

gap> S:=Monoid(gens[1]);;

gap> for i in [2..4] do S:=ClosureSemigroup(S, gens[i]); od;

gap> S;

<transformation monoid of degree 8 with 4 generators>

gap> Size(S);

233606

gap> gens:=

> [NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,GF(25),2,

> [[Z(5^2), Z(5^2)^13], [0*Z(5), Z(5^2)^14]]),

> NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,GF(25),2,

> [[Z(5^2)^21, Z(5)^0], [Z(5)^0, 0*Z(5)]]),

> NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,GF(25),2,

> [[Z(5^2)^23, Z(5^2)^5], [Z(5^2)^20, Z(5^2)^20]])];;

gap> S := Semigroup(gens[1]);

<semigroup of 2x2 matrices over GF(5^2) with 1 generator>

gap> Size(S);

24

gap> S := ClosureSemigroup(S, gens[2]);

<semigroup of 2x2 matrices over GF(5^2) with 2 generators>

gap> Size(S);

124800

gap> S := ClosureSemigroup(S, gens[3]);

<semigroup of 2x2 matrices over GF(5^2) with 3 generators>

gap> Size(S);

374400

2.2.3 SubsemigroupByProperty (for a semigroup and function)

. SubsemigroupByProperty(S, func) (operation)

. SubsemigroupByProperty(S, func, limit) (operation)

Returns: A semigroup.

SubsemigroupByProperty returns the subsemigroup of the semigroup S generated by those

elements of S ful�lling func (which should be a function returning true or false).

If no elements of S ful�l func , then fail is returned.

If the optional third argument limit is present and a positive integer, then once the subsemigroup

has at least limit elements the computation stops.

Example
gap> func := function(f) return 1 ^ f <> 1 and

> ForAll([1..DegreeOfTransformation(f)], y-> y = 1 or y ^ f = y); end;

function(f) ... end

gap> T := SubsemigroupByProperty(FullTransformationSemigroup(3), func);

<transformation semigroup of size 2, degree 3 with 2 generators>

gap> T := SubsemigroupByProperty(FullTransformationSemigroup(4), func);

<transformation semigroup of size 3, degree 4 with 3 generators>

gap> T := SubsemigroupByProperty(FullTransformationSemigroup(5), func);

<transformation semigroup of size 4, degree 5 with 4 generators>

Semigroups 16

2.2.4 InverseSubsemigroupByProperty

. InverseSubsemigroupByProperty(S, func) (operation)

Returns: An inverse semigroup.

InverseSubsemigroupByProperty returns the inverse subsemigroup of the inverse semigroup

S generated by those elements of S ful�lling func (which should be a function returning true or

false).

If no elements of S ful�l func , then fail is returned.

If the optional third argument limit is present and a positive integer, then once the subsemigroup

has at least limit elements the computation stops.

Example
gap> IsIsometry:=function(f)

> local n, i, j, k, l;

> n:=RankOfPartialPerm(f);

> for i in [1..n-1] do

> k:=DomainOfPartialPerm(f)[i];

> for j in [i+1..n] do

> l:=DomainOfPartialPerm(f)[j];

> if not AbsInt(k^f-l^f)=AbsInt(k-l) then

> return false;

> fi;

> od;

> od;

> return true;

> end;;

gap> S:=InverseSubsemigroupByProperty(SymmetricInverseSemigroup(5),

> IsIsometry);;

gap> Size(S);

142

2.3 Options when creating semigroups

When using any of the functions:

� InverseSemigroup (Reference: InverseSemigroup),

� InverseMonoid (Reference: InverseMonoid),

� Semigroup (Reference: Semigroup),

� Monoid (Reference: Monoid),

� SemigroupByGenerators (Reference: SemigroupByGenerators),

� MonoidByGenerators (Reference: MonoidByGenerators),

� ClosureInverseSemigroup (2.2.1),

� ClosureSemigroup (2.2.2),

� SemigroupIdeal (3.1.1)

Semigroups 17

a record can be given as an optional �nal argument. The components of this record specify the values

of certain options for the semigroup being created. A list of these options and their default values is

given below.

Assume that S is the semigroup created by one of the functions given above and that either: S

is generated by a collection gens of transformations, partial permutations, Rees 0-matrix semigroup

elements, or bipartitions; or S is an ideal of such a semigroup.

acting

this component should be true or false. In order for a semigroup to use the methods in

Semigroups it must satisfy IsActingSemigroup. By default any semigroup or monoid

of transformations, partial permutations, Rees 0-matrix elements, or bipartitions satis�es

IsActingSemigroup. From time to time, it might be preferable to use the exhaustive algo-

rithm in the GAP library to compute with a semigroup. If this is the case, then the value of

this component can be set false when the semigroup is created. Following this none of the

methods in the Semigroups package will be used to compute anything about the semigroup.

regular

this component should be true or false. If it is known a priori that the semigroup S being

created is a regular semigroup, then this component can be set to true. In this case, S knows

it is a regular semigroup and can take advantage of the methods for regular semigroups in

Semigroups. It is usually much more ef�cient to compute with a regular semigroup that to

compute with a non-regular semigroup.

If this option is set to true when the semigroup being de�ned is NOT regular, then the results

might be unpredictable.

The default value for this option is false.

hashlen

this component should be a positive integer, which roughly speci�es the lengths of the hash

tables used internally by Semigroups. Semigroups uses hash tables in several fundamental

methods. The lengths of these tables are a compromise between performance and memory

usage; larger tables provide better performance for large computations but use more memory.

Note that it is unlikely that you will need to specify this option unless you �nd that GAP runs

out of memory unexpectedly or that the performance of Semigroups is poorer than expected.

If you �nd that GAP runs out of memory unexpectedly, or you plan to do a large number of

computations with relatively small semigroups (say with tens of thousands of elements), then

you might consider setting hashlen to be less than the default value of 25013 for each of these

semigroups. If you �nd that the performance of Semigroups is unexpectedly poor, or you plan

to do a computation with a very large semigroup (say, more than 10 million elements), then you

might consider setting hashlen to be greater than the default value of 25013.

You might �nd it useful to set the info level of the info class InfoOrb to 2 or higher since

this will indicate when hash tables used by Semigroups are being grown; see SetInfoLevel

(Reference: SetInfoLevel).

small

if this component is set to true, then Semigroups will compute a small subset of gens that

generates S at the time that S is created. This will increase the amount of time required to create

S substantially, but may decrease the amount of time required for subsequent calculations with

Semigroups 18

S . If this component is set to false, then Semigroups will return the semigroup generated by

gens without modifying gens . The default value for this component is false.

This option is ignored when passed to ClosureSemigroup (2.2.2) or

ClosureInverseSemigroup (2.2.1).

Example
gap> S := Semigroup(Transformation([1, 2, 3, 3]),

> rec(hashlen:=100003, small:=false));

<commutative transformation semigroup of degree 4 with 1 generator>

The default values of the options described above are stored in a global variable named

SemigroupsOptionsRec (2.3.1). If you want to change the default values of these options for a

single GAP session, then you can simply rede�ne the value in GAP. For example, to change the

option small from the default value of false use:
Example

gap> SemigroupsOptionsRec.small:=true;

true

If you want to change the default values of the options stored in SemigroupsOptionsRec (2.3.1) for

all GAP sessions, then you can edit these values in the �le semigroups/gap/options.g.

2.3.1 SemigroupsOptionsRec

. SemigroupsOptionsRec (global variable)

This global variable is a record whose components contain the default values of certain options for

transformation semigroups created after Semigroups has been loaded. A description of these options

is given above in Section 2.3.

The value of SemigroupsOptionsRec is de�ned in the �le semigroups/gap/options.g as:
Example

rec(acting := true, hashlen := rec(L := 25013, M := 6257, S :=

251), regular := false, small := false)

2.4 Changing the representation of a semigroup

In addition, to the library functions

� IsomorphismReesMatrixSemigroup (Reference: IsomorphismReesMatrixSemigroup),

� AntiIsomorphismTransformationSemigroup (Reference: AntiIsomorphismTransfor-

mationSemigroup),

� IsomorphismTransformationSemigroup (Reference: IsomorphismTransformationSemi-

group),

� IsomorphismPartialPermSemigroup (Reference: IsomorphismPartialPermSemigroup),

there are several methods for changing the representation of a semigroup in Semigroups. There

are also methods for the operations given above for the types of semigroups de�ned in Semigroups

which are not mentioned in the reference manual.

Semigroups 19

2.4.1 AsTransformationSemigroup

. AsTransformationSemigroup(S) (operation)

. AsPartialPermSemigroup(S) (operation)

. AsBipartitionSemigroup(S) (operation)

. AsBlockBijectionSemigroup(S) (operation)

. AsMatrixSemigroup(S[, F]) (operation)

Returns: A semigroup.

AsTransformationSemigroup(S) is just shorthand for Range(IsomorphismTransformationSemigroup(S)),

when S is a semigroup; see IsomorphismTransformationSemigroup (Reference: Isomorphism-

TransformationSemigroup) for more details.

The operations:

� AsPartialPermSemigroup;

� AsBipartitionSemigroup;

� AsBlockBijectionSemigroup;

are analogous to AsTransformationSemigroup.

AsMatrixSemigroup returns the range of an isomorphism from S to a semigroup of matrices

over GF(2). If the optional argument F is present, then AsMatrixSemigroup returns an isomorphic

semigroup over the �nite �eld F .
Example

gap> S := Semigroup([Bipartition([[1, 2], [3, 6, -2],

> [4, 5, -3, -4], [-1, -6], [-5]]),

> Bipartition([[1, -4], [2, 3, 4, 5], [6], [-1, -6],

> [-2, -3], [-5]])]);

<bipartition semigroup of degree 6 with 2 generators>

gap> AsTransformationSemigroup(S);

<transformation semigroup of degree 12 with 2 generators>

gap> AsMatrixSemigroup(S);

<semigroup of 12x12 matrices over GF(2) with 2 generators>

gap> T := Semigroup(Transformation([2, 2, 3]), Transformation([3, 1, 3]));

<transformation semigroup of degree 3 with 2 generators>

gap> S := AsMatrixSemigroup(T, GF(5));

<semigroup of 3x3 matrices over GF(5) with 2 generators>

gap> Size(S);

5

2.4.2 IsomorphismPermGroup

. IsomorphismPermGroup(S) (operation)

Returns: An isomorphism.

If the semigroup S is mathematically a group, so that it satis�es IsGroupAsSemigroup (4.6.6),

then IsomorphismPermGroup returns an isomorphism to a permutation group.

If S is not a group then an error is given.

Example
gap> S := Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 5]),

> Transformation([3, 3, 8, 2, 5, 6, 4, 4]));;

gap> IsGroupAsSemigroup(S);

Semigroups 20

true

gap> Range(IsomorphismPermGroup(S));

Group([(5,6,8), (2,3,8,4)])

gap> StructureDescription(Range(IsomorphismPermGroup(S)));

"S6"

gap> S := Range(IsomorphismPartialPermSemigroup(SymmetricGroup(4)));

<inverse partial perm semigroup of rank 4 with 2 generators>

gap> IsomorphismPermGroup(S);

MappingByFunction(<partial perm group of rank 4 with 2 generators>

, Group([(1,2,3,4), (1,

2)]), <Attribute "AsPermutation">, function(x) ... end)

gap> G := GroupOfUnits(PartitionMonoid(4));

<bipartition group of degree 4 with 2 generators>

gap> StructureDescription(G);

"S4"

gap> iso := IsomorphismPermGroup(G);

MappingByFunction(<bipartition group of degree 4 with 2 generators>

, S4, <Attribute "AsPermutation">, function(x) ... end)

gap> RespectsMultiplication(iso);

true

gap> inv := InverseGeneralMapping(iso);;

gap> ForAll(G, x-> (x^iso)^inv=x);

true

gap> ForAll(G, x-> ForAll(G, y-> (x*y)^iso=x^iso*y^iso));

true

2.4.3 IsomorphismBipartitionSemigroup

. IsomorphismBipartitionSemigroup(S) (attribute)

. IsomorphismBipartitionMonoid(S) (attribute)

Returns: An isomorphism.

If S is a semigroup, then IsomorphismBipartitionSemigroup returns an isomorphism from S

to a bipartition semigroup. When S is a transformation semigroup, partial permutation semigroup, or

a permutation group, on n points, IsomorphismBipartitionSemigroup returns the natural embed-

ding of S into the partition monoid on n points. When S is a generic semigroup, this funciton returns

the right regular representation of S acting on S with an identity adjoined.

See AsBipartition (5.3.1).

Example
gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 6, 8, 10],

> [2, 6, 7, 9, 1, 5]),

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],

> [3, 8, 1, 9, 4, 10, 5, 6]));;

gap> IsomorphismBipartitionSemigroup(S);

MappingByFunction(<inverse partial perm semigroup of rank 10 with 2

generators>, <inverse bipartition semigroup of degree 10 with 2

generators>, function(x) ... end, <Operation "AsPartialPerm">)

gap> ForAll(Generators(Range(last)), IsPartialPermBipartition);

true

Semigroups 21

2.4.4 IsomorphismBlockBijectionSemigroup

. IsomorphismBlockBijectionSemigroup(S) (attribute)

. IsomorphismBlockBijectionMonoid(S) (attribute)

Returns: An isomorphism.

If S is a partial perm semigroup on n points, then this function returns the embedding of S into

a subsemigroup of the dual symmetric inverse monoid on n+1 points given by the FitzGerald-Leech

Theorem [FL98].

See AsBlockBijection (5.3.2) for more details.

Example
gap> S := SymmetricInverseMonoid(4);

<symmetric inverse monoid of degree 4>

gap> IsomorphismBlockBijectionSemigroup(S);

MappingByFunction(<symmetric inverse monoid of degree 4>,

<inverse bipartition monoid of degree 5 with 3 generators>

, function(x) ... end, function(x) ... end)

gap> Size(Range(last));

209

gap> S:=Semigroup(PartialPerm([1, 2], [3, 1]),

> PartialPerm([1, 2, 3], [1, 3, 4]));;

gap> IsomorphismBlockBijectionSemigroup(S);

MappingByFunction(<partial perm semigroup of rank 3 with 2

generators>, <bipartition semigroup of degree 5 with 2 generators>

, function(x) ... end, function(x) ... end)

2.4.5 IsomorphismMatrixSemigroup

. IsomorphismMatrixSemigroup(S[, F]) (attribute)

Returns: An isomorphism to a matrix semigroup.

This attribute contains an isomorphism from the semigroup S to a matrix semigroup. Currently

this is done by taking a standard basis of a vector space suitable dimension and acting on this basis

over the �eld F if F is given, and over GF(2) if F is not given. This will not give an optimal matrix

semigroup representation of S .
Example

gap> T := Semigroup(Transformation([2, 2, 3]), Transformation([3, 1, 3]));

<transformation semigroup of degree 3 with 2 generators>

gap> iso := IsomorphismMatrixSemigroup(T);

MappingByFunction(<transformation semigroup of degree 3 with 2

generators>, <semigroup of 3x3 matrices over GF(2)

with 2 generators>, function(x) ... end, function(x) ... end)

gap> Size(Range(iso));

5

2.5 Standard examples

In this section, we describe the operations in Semigroups that can be used to creating semigroups be-

longing to several standard classes of example. See Chapter 5 for more information about semigroups

of bipartitions.

Semigroups 22

2.5.1 EndomorphismsPartition

. EndomorphismsPartition(list) (operation)

Returns: A transformation monoid.

If list is a list of positive integers, then EndomorphismsPartition returns a monoid of endo-

morphisms preserving a partition of [1..Sum(list)] with a part of length list[i] for every i. For

example, if list=[1,2,3], then EndomorphismsPartition returns the monoid of endomorphisms

of the partition [[1],[2,3],[4,5,6]].

If f is a transformation of [1..n], then it is an ENDOMORPHISM of a partition P on [1..n] if

(i,j) in P implies that (i^f, j^f) is in P.

EndomorphismsPartition returns a monoid with a minimal size generating set, as described in

[ABMS14].
Example

gap> S:=EndomorphismsPartition([3,3,3]);

<transformation semigroup of degree 9 with 4 generators>

gap> Size(S);

531441

2.5.2 PartitionMonoid

. PartitionMonoid(n) (operation)

. SingularPartitionMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a positive integer, then this operation returns the partition monoid of degree n which is the

monoid consisting of all the bipartitions of degree n .

SingularPartitionMonoid returns the ideal of the partition monoid consisting of the non-

invertible elements (i.e. those not in the group of units).

Example
gap> S:=PartitionMonoid(5);

<regular bipartition monoid of degree 5 with 4 generators>

gap> Size(S);

115975

2.5.3 PlanarPartitionMonoid

. PlanarPartitionMonoid(n) (operation)

. SingularPlanarPartitionMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a positive integer, then this operation returns the planar partition monoid of degree n which

is the monoid consisting of all the planar bipartitions of degree n (planar bipartitions are de�ned in

Chapter 5).

SingularPlanarPartitionMonoid returns the ideal of the planar partition monoid consisting

of the non-invertible elements (i.e. those not in the group of units).

Example
gap> S := PlanarPartitionMonoid(5);

<regular bipartition monoid of degree 5 with 9 generators>

gap> Size(S);

16796

Semigroups 23

2.5.4 BrauerMonoid

. BrauerMonoid(n) (operation)

. SingularBrauerMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a positive integer, then this operation returns the Brauer monoid of degree n . The BRAUER

MONOID is the subsemigroup of the partition monoid consisiting of those bipartitions where the size

of every block is 2.

SingularBrauerMonoid returns the ideal of the Brauer monoid consisting of the non-invertible

elements (i.e. those not in the group of units), when n is at least 2.
Example

gap> S:=BrauerMonoid(4);

<regular bipartition monoid of degree 4 with 3 generators>

gap> IsSubsemigroup(S, JonesMonoid(4));

true

gap> Size(S);

105

gap> SingularBrauerMonoid(8);

<regular bipartition semigroup ideal of degree 8 with 1 generator>

2.5.5 JonesMonoid

. JonesMonoid(n) (operation)

. TemperleyLiebMonoid(n) (operation)

. SingularJonesMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a positive integer, then this operation returns the Jones monoid of degree n . The JONES

MONOID is the subsemigroup of the Brauer monoid consisting of those bipartitions with a planar

diagram. The Jones monoid is sometimes referred to as the TEMPERLEY-LIEB MONOID.

SingularJonesMonoid returns the ideal of the Jones monoid consisting of the non-invertible

elements (i.e. those not in the group of units), when n is at least 2.
Example

gap> S:=JonesMonoid(4);

<regular bipartition monoid of degree 4 with 3 generators>

gap> SingularJonesMonoid(8);

<regular bipartition semigroup ideal of degree 8 with 1 generator>

2.5.6 PartialTransformationSemigroup

. PartialTransformationSemigroup(n) (operation)

Returns: A transformation monoid.

If n is a positive integer, then this function returns a semigroup of transformations on n+1 points

which is isomorphic to the semigroup consisting of all partial transformation on n points. This monoid

has (n+1)^n elements.
Example

gap> PartialTransformationSemigroup(8);

<regular transformation monoid of degree 9 with 4 generators>

gap> Size(last);

43046721

Semigroups 24

2.5.7 DualSymmetricInverseSemigroup

. DualSymmetricInverseSemigroup(n) (operation)

. DualSymmetricInverseMonoid(n) (operation)

. SingularDualSymmetricInverseSemigroup(n) (operation)

Returns: An inverse bipartition monoid.

If n is a positive integer, then these operations return the dual symmetric inverse monoid of degree

n , which is the subsemigroup of the partition monoid consisting of the block bijections of degree n .

SingularDualSymmetricInverseSemigroup returns the ideal of the dual symmetric inverse

monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is at

least 2.

See IsBlockBijection (5.5.13).
Example

gap> Number(PartitionMonoid(3), IsBlockBijection);

25

gap> S := DualSymmetricInverseSemigroup(3);

<inverse bipartition monoid of degree 3 with 3 generators>

gap> Size(S);

25

2.5.8 UniformBlockBijectionMonoid

. UniformBlockBijectionMonoid(n) (operation)

. FactorisableDualSymmetricInverseSemigroup(n) (operation)

. SingularUniformBlockBijectionMonoid(n) (operation)

. SingularFactorisableDualSymmetricInverseSemigroup(n) (operation)

. PlanarUniformBlockBijectionMonoid(n) (operation)

. SingularPlanarUniformBlockBijectionMonoid(n) (operation)

Returns: An inverse bipartition monoid.

If n is a positive integer, then this operation returns the uniform block bijection monoid of degree

n . The uniform block bijection monoid is the submonoid of the partition monoid consisting of the

block bijections of degree n where the number of positive integers in a block equals the number

of negative integers in that block. The uniform block bijection monoid is also referred to as the

factorisable dual symmetric inverse semigroup.

SingularUniformBlockBijectionMonoid returns the ideal of the uniform block bijection

monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is

at least 2.

PlanarUniformBlockBijectionMonoid returns the submonoid of the uniform block bijection

monoid consisting of the planar elements (i.e. those in the planar partition monoid).

SingularPlanarUniformBlockBijectionMonoid returns the ideal of the planar uniform block

bijection monoid consisting of the non-invertible elements (i.e. those not in the group of units), when

n is at least 2.

See IsUniformBlockBijection (5.5.14).
Example

gap> S := UniformBlockBijectionMonoid(4);

<inverse bipartition monoid of degree 4 with 3 generators>

gap> Size(PlanarUniformBlockBijectionMonoid(8));

128

gap> S:=DualSymmetricInverseMonoid(4);

Semigroups 25

<inverse bipartition monoid of degree 4 with 3 generators>

gap> IsFactorisableSemigroup(S);

false

gap> S:=FactorisableDualSymmetricInverseSemigroup(4);

<inverse bipartition monoid of degree 4 with 3 generators>

gap> IsFactorisableSemigroup(S);

true

gap> S:=Range(IsomorphismBipartitionSemigroup(SymmetricInverseMonoid(5)));

<inverse bipartition monoid of degree 5 with 3 generators>

gap> IsFactorisableSemigroup(S);

true

2.5.9 ApsisMonoid

. ApsisMonoid(m, n) (operation)

. SingularApsisMonoid(m, n) (operation)

. CrossedApsisMonoid(m, n) (operation)

. SingularCrossedApsisMonoid(m, n) (operation)

Returns: A bipartition monoid.

If m and n are positive integers, then this operation returns the m -apsis monoid of degree n .

The m -apsis monoid is the monoid of bipartitions generated when the diapses in generators of the

Jones monoid are replaced with m -apses. Note that an m -apsis is a block that contains precisely m

consecutive integers.

SingularApsisMonoid returns the ideal of the apsis monoid consisting of the non-invertible

elements (i.e. those not in the group of units), when m <= n .

CrossedApsisGeneratedMonoid returns the semigroup generated by the symmetric group of

degree n and the m -apsis monoid of degree n .

SingularCrossedApsisMonoid returns the ideal of the crossed apsis monoid consisting of the

non-invertible elements (i.e. those not in the group of units), when m <= n .
Example

gap> S := ApsisMonoid(3, 7);

<regular bipartition monoid of degree 7 with 5 generators>

gap> Size(S);

320

gap> Size(CrossedApsisMonoid(4, 9));

24291981

2.5.10 ModularPartitionMonoid

. ModularPartitionMonoid(m, n) (operation)

. SingularModularPartitionMonoid(m, n) (operation)

. PlanarModularPartitionMonoid(m, n) (operation)

. SingularPlanarModularPartitionMonoid(m, n) (operation)

Returns: A bipartition monoid.

If m and n are positive integers, then this operation returns the modular-m partition monoid of

degree n . The modular-m partition monoid is the submonoid of the partition monoid such that the

numbers of positive and negative integers contained in each block are congruent mod m .

Semigroups 26

SingularModularPartitionMonoid returns the ideal of the modular partition monoid consist-

ing of the non-invertible elements (i.e. those not in the group of units), when either m = n = 1 or

m, n > 1 .

PlanarModularPartitionMonoid returns the submonoid of the modular-m partition monoid

consisting of the planar elements (i.e. those in the planar partition monoid).

SingularPlanarModularPartitionMonoid returns the ideal of the planar modular partition

monoid consisting of the non-invertible elements (i.e. those not in the group of units), when either

m = n = 1 or m, n > 1 .
Example

gap> S := ModularPartitionMonoid(3, 7);

<regular bipartition monoid of degree 7 with 4 generators>

gap> Size(S);

826897

gap> Size(PlanarModularPartitionMonoid(4, 9));

1795

2.5.11 FullMatrixSemigroup

. FullMatrixSemigroup(d, q) (operation)

. GeneralLinearSemigroup(d, q) (operation)

. GLS(d, q) (operation)

Returns: A matrix semigroup.

FullMatrixSemigroup, GeneralLinearSemigroup, and GLS are synonyms for each other.

They both return the full matrix semigroup, or if you prefer the general linear semigroup, of d by

d matrices with entries over the �eld with q elements. This semigroup has q ^ (d ^ 2) elements.
Example

gap> S := FullMatrixSemigroup(3, 4);

<general linear monoid 3x3 over GF(2^2)>

gap> Size(S);

262144

2.5.12 SpecialLinearSemigroup

. SpecialLinearSemigroup(d, q) (operation)

. SLS(d, q) (operation)

Returns: A matrix semigroup.

SpecialLinearSemigroup and SLS are synonymous. The special linear semigroup of d by d

matrices with entries over the �eld with q elements is generated by a generating set for the special

linear group of d by d matrices over the �eld with q elements and a matrix of rank d-1 .
Example

gap> S := SLS(3,4);

<special linear monoid 3x3 over GF(2^2)>

gap> Size(S);

141184

2.5.13 MunnSemigroup

. MunnSemigroup(S) (operation)

Returns: The Munn semigroup of a semilattice.

Semigroups 27

If S is a semilattice, then MunnSemigroup returns the inverse semigroup of partial permutations

of isomorphisms of principal ideals of S ; called the Munn semigroup of S .

This function was written jointly by J. D. Mitchell, Yann Peresse (St Andrews), Yanhui Wang

(York).

PLEASE NOTE: the Grape package version 4.5 or higher must be available and compiled for this

function to work.
Example

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10], [4, 6, 7, 3, 8, 2, 9, 5]),

> PartialPerm([1, 2, 7, 9], [5, 6, 4, 3]));

<inverse partial perm semigroup of rank 10 with 2 generators>

gap> T := InverseSemigroup(Idempotents(S), rec(small := true));;

gap> M := MunnSemigroup(T);;

gap> NrIdempotents(M);

60

gap> NrIdempotents(S);

60

2.5.14 Monoids of order preserving functions

. OrderEndomorphisms(n) (operation)

. POI(n) (operation)

. POPI(n) (operation)

Returns: A semigroup of transformations or partial permutations related to a linear order.

OrderEndomorphisms(n)

OrderEndomorphisms(n) returns the monoid of transformations that preserve the usual order

on f1;2; : : : ;ng where n is a positive integer. OrderEndomorphisms(n) is generated by the

n+1 transformations:�
1 2 3 � � � n�1 n

1 1 2 � � � n�2 n�1

�
;

�
1 2 � � � i�1 i i+1 i+2 � � � n

1 2 � � � i�1 i+1 i+1 i+2 � � � n

�

where i= 0; : : : ;n�1 and has
�
2n�1
n�1

�
elements.

POI(n)

POI(n) returns the inverse monoid of partial permutations that preserve the usual order on

f1;2; : : : ;ng where n is a positive integer. POI(n) is generated by the n partial permutations:�
1 2 3 � � � n

� 1 2 � � � n�1

�
;

�
1 2 � � � i�1 i i+1 i+2 � � � n

1 2 � � � i�1 i+1 � i+2 � � � n

�

where i= 1; : : : ;n�1 and has
�
2n
n

�
elements.

POPI(n)

POPI(n) returns the inverse monoid of partial permutation that preserve the orientation of

f1;2; : : : ;ng where n is a positive integer. POPI(n) is generated by the partial permutations:�
1 2 � � � n�1 n

2 3 � � � n 1

�
;

�
1 2 � � � n�2 n�1 n

1 2 � � � n�2 n �

�
:

and has 1+ n
2

�
2n
n

�
elements.

http://www.maths.qmul.ac.uk/~leonard/grape/

Semigroups 28

Example
gap> S:=POPI(10);

<inverse partial perm monoid of rank 10 with 2 generators>

gap> Size(S);

923781

gap> 1+5*Binomial(20, 10);

923781

gap> S:=POI(10);

<inverse partial perm monoid of rank 10 with 10 generators>

gap> Size(S);

184756

gap> Binomial(20,10);

184756

gap> IsSubsemigroup(POPI(10), POI(10));

true

gap> S:=OrderEndomorphisms(5);

<regular transformation monoid of degree 5 with 5 generators>

gap> IsIdempotentGenerated(S);

true

gap> Size(S)=Binomial(2*5-1, 5-1);

true

2.5.15 SingularTransformationSemigroup

. SingularTransformationSemigroup(n) (operation)

. SingularTransformationMonoid(n) (operation)

Returns: The semigroup of non-invertible transformations.

If n is a integer greater than 1, then this function returns the semigroup of non-invertible transfor-

mations, which is generated by the n(n-1) idempotents of degree n and rank n-1 and has nn� n!

elements.
Example

gap> S:=SingularTransformationSemigroup(5);

<regular transformation semigroup ideal of degree 5 with 1 generator>

gap> Size(S);

3005

2.5.16 RegularBinaryRelationSemigroup

. RegularBinaryRelationSemigroup(n) (operation)

Returns: A semigroup of binary relations.

RegularBinaryRelationSemigroup return the semigroup generated by the regular binary re-

lations on the set f1; : : : ;ng for a positive integer n . RegularBinaryRelationSemigroup(n) is

generated by the 4 binary relations:

�
1 2 � � � n�1 n

2 3 � � � n 1

�
;

�
1 2 3 � � � n

2 1 3 � � � n

�
;�

1 2 � � � n�1 n

2 2 � � � n�1 f1;ng

�
;

�
1 2 � � � n�1 n

2 2 � � � n�1 �

�
:

This semigroup has nearly 2(n
2) elements.

Semigroups 29

2.5.17 MonogenicSemigroup

. MonogenicSemigroup([filt,]m, r) (function)

Returns: A monogenic semigroup with index m and period r .

If m and r are positive integers, then this function returns a monogenic semigroup S with index m

and period r in the category given by the �lter filt .

The optional argument filt may be one of the following:

� IsTransformationSemigroup (the default, if filt is not speci�ed),

� IsPartialPermSemigroup,

� IsBipartitionSemigroup,

� IsBlockBijectionSemigroup.

The semigroup S is generated by a single element, f . S consists of the elements

f ; f 2; : : : ; fm; : : : ; fm+r�1. The minimal ideal of S consists of the elements fm; : : : ; fm+r�1 and is

isomorphic to the cyclic group of order r.

See IsMonogenicSemigroup (4.6.10) for more information about monogenic semigroups.

Example
gap> S := MonogenicSemigroup(5, 3);

<commutative non-regular transformation semigroup of size 7, degree 8

with 1 generator>

gap> IsMonogenicSemigroup(S);

true

gap> I := MinimalIdeal(S);

<commutative simple transformation semigroup ideal of degree 8 with

1 generator>

gap> IsGroupAsSemigroup(I);

true

gap> StructureDescription(I);

"C3"

gap> S := MonogenicSemigroup(IsBlockBijectionSemigroup, 9, 1);

<commutative non-regular bipartition semigroup of size 9, degree 10

with 1 generator>

2.5.18 RectangularBand

. RectangularBand([filt,]m, n) (function)

Returns: An m by n rectangular band.

If m and n are positive integers, then this function returns a semigroup isomorphic to an m by n

rectangular band, which is in the category given by the �lter filt .

The optional argument filt may be one of the following:

� IsTransformationSemigroup,

� IsBipartitionSemigroup,

� IsReesMatrixSemigroup (the default, if filt is not speci�ed).

See IsRectangularBand (4.6.13) for more information about rectangular bands.

Semigroups 30

Example
gap> S := RectangularBand(4, 8);

<Rees matrix semigroup 4x8 over Group(())>

gap> IsRectangularBand(S);

true

gap> IsCompletelySimpleSemigroup(S) and IsHTrivial(S);

true

gap> T := RectangularBand(IsTransformationSemigroup, 5, 6);

<transformation semigroup of size 30, degree 31 with 6 generators>

gap> IsRectangularBand(T);

true

2.5.19 ZeroSemigroup

. ZeroSemigroup([filt,]n) (function)

Returns: A zero semigroup of order n .

If n is a positive integer, then this function returns a zero semigroup of order n in the category

given by the �lter filt .

The optional argument filt may be one of the following:

� IsTransformationSemigroup,

� IsPartialPermSemigroup (the default, if filt is not speci�ed),

� IsBipartitionSemigroup,

� IsBlockBijectionSemigroup,

� IsReesZeroMatrixSemigroup (provided that n > 1).

See IsZeroSemigroup (4.6.23) for more information about zero semigroups.

Example
gap> S := ZeroSemigroup(15);

<non-regular partial perm semigroup of size 15, rank 14 with 14

generators>

gap> Size(S);

15

gap> z := MultiplicativeZero(S);

<empty partial perm>

gap> IsZeroSemigroup(S);

true

gap> ForAll(S, x -> ForAll(S, y -> x * y = z));

true

gap> S := ZeroSemigroup(IsReesZeroMatrixSemigroup, 5);

<Rees 0-matrix semigroup 4x1 over Group(())>

gap> Matrix(S);

[[0, 0, 0, 0]]

gap> IsZeroSemigroup(S);

true

Semigroups 31

2.5.20 LeftZeroSemigroup

. LeftZeroSemigroup([filt,]n) (function)

. RightZeroSemigroup([filt,]n) (function)

Returns: A left zero (or right zero) semigroup of order n .

If n is a positive integer, then this function returns a left zero (or right zero, as appropriate)

semigroup of order n in the category given by the �lter filt .

The optional argument filt may be one of the following:

� IsTransformationSemigroup (the default, if filt is not speci�ed),

� IsBipartitionSemigroup,

� IsReesMatrixSemigroup.

See IsLeftZeroSemigroup (4.6.9) and IsRightZeroSemigroup (4.6.15) for more information

about left and right zero semigroups.

Example
gap> S := LeftZeroSemigroup(20);

<transformation semigroup of size 20, degree 21 with 20 generators>

gap> IsLeftZeroSemigroup(S);

true

gap> ForAll(Tuples(S, 2), p -> p[1] * p[2] = p[1]);

true

gap> S := RightZeroSemigroup(IsBipartitionSemigroup, 5);

<bipartition semigroup of size 5, degree 3 with 5 generators>

gap> IsRightZeroSemigroup(S);

true

Chapter 3

Ideals

In this chapter we describe the various ways that an ideal of a semigroup can be created and manipu-

lated in Semigroups.

We write ideal to mean two-sided ideal everywhere in this chapter.

The methods in the Semigroups package apply to any ideal of a transformation, partial per-

mutation, or bipartition semigroup, or an ideal of a subsemigroup of a Rees 0-matrix semigroup or

semigroup of matrices over a �nite �eld, that is created by the function SemigroupIdeal (3.1.1) or

SemigroupIdealByGenerators. Anything that can be calculated for a semigroup de�ned by a gen-

erating set can also be found for an ideal. This works particularly well for regular ideals, since such

an ideal can be represented using a similar data structure to that used to represent a semigroup de�ned

by a generating set but without the necessity to �nd a generating set for the ideal. Many methods

for non-regular ideals rely on �rst �nding a generating set for the ideal, which can be costly (but not

nearly as costly as an exhaustive enumeration of the elements of the ideal). We plan to improve the

functionality of Semigroups for non-regular ideals in the future.

3.1 Creating ideals

3.1.1 SemigroupIdeal

. SemigroupIdeal(S, obj1, obj2, ...) (function)

Returns: An ideal of a semigroup.

If obj1 , obj2 , ... are (any combination) of elements of the semigroup S or collections of elements

of S (including subsemigroups and ideals of S), then SemigroupIdeal returns the 2-sided ideal of

the semigroup S generated by the union of obj1 , obj2 ,

The Parent (Reference: Parent) of the ideal returned by this function is S .
Example

gap> S := SymmetricInverseMonoid(10);

<symmetric inverse monoid of degree 10>

gap> I := SemigroupIdeal(S, PartialPerm([1,2]));

<inverse partial perm semigroup ideal of rank 10 with 1 generator>

gap> Size(I);

4151

gap> I := SemigroupIdeal(S, I, Idempotents(S));

<inverse partial perm semigroup ideal of rank 10 with 1025 generators>

32

Semigroups 33

3.2 Attributes of ideals

3.2.1 GeneratorsOfSemigroupIdeal

. GeneratorsOfSemigroupIdeal(I) (attribute)

Returns: The generators of an ideal of a semigroup.

This function returns the generators of the two-sided ideal I , which were used to de�ned I when

it was created.

If I is an ideal of a semigroup, then I is de�ned to be the least 2-sided ideal of a semigroup S

containing a set J of elements of S. The set J is said to generate I .

The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup

or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general,

equal to that ideal. Use GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) to obtain

a semigroup generating set for an ideal, but beware that this can be very costly.

Example
gap> S:=Semigroup(

> Bipartition([[1, 2, 3, 4, -1], [-2, -4], [-3]]),

> Bipartition([[1, 2, 3, -3], [4], [-1], [-2, -4]]),

> Bipartition([[1, 3, -2], [2, 4], [-1, -3, -4]]),

> Bipartition([[1], [2, 3, 4], [-1, -3, -4], [-2]]),

> Bipartition([[1], [2, 4, -2], [3, -4], [-1], [-3]]));;

gap> I:=SemigroupIdeal(S, S.1*S.2*S.5);

<regular bipartition semigroup ideal of degree 4 with 1 generator>

gap> GeneratorsOfSemigroupIdeal(I);

[<bipartition: [1, 2, 3, 4, -4], [-1], [-2], [-3]>]

gap> I=Semigroup(GeneratorsOfSemigroupIdeal(I));

false

3.2.2 MinimalIdealGeneratingSet

. MinimalIdealGeneratingSet(I) (attribute)

Returns: A minimal set ideal generators of an ideal.

This function returns a minimal set of elements of the parent of the semigroup ideal I required to

generate I as an ideal.

The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup

or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general,

equal to that ideal. Use GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) to obtain

a semigroup generating set for an ideal, but beware that this can be very costly.

Example
gap> S:=Monoid(

> Bipartition([[1, 2, 3, -2], [4], [-1, -4], [-3]]),

> Bipartition([[1, 4, -2, -4], [2, -1, -3], [3]]));;

gap> I:=SemigroupIdeal(S, S);

<non-regular bipartition semigroup ideal of degree 4 with 3 generators

>

gap> MinimalIdealGeneratingSet(I);

[<block bijection: [1, -1], [2, -2], [3, -3], [4, -4]>]

Semigroups 34

3.2.3 SupersemigroupOfIdeal

. SupersemigroupOfIdeal(I) (attribute)

Returns: An ideal of a semigroup.

The Parent (Reference: Parent) of an ideal is the semigroup in which the ideal was created, i.e.

the �rst argument of SemigroupIdeal (3.1.1) or SemigroupByGenerators. This function returns

the semigroup containing GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) which

are used to compute the ideal.

For a regular semigroup ideal, SupersemigroupOfIdeal will always be the top most semigroup

used to create any of the predecessors of the current ideal. For example, if S is a semigroup, I is a regu-

lar ideal of S, and J is an ideal of I, then Parent(J) is I and SupersemigroupOfIdeal(J) is S. This

is to avoid computing a generating set for I, in this example, which is expensive and unnecessary since

I is regular (in which case the Green's relations of I are just restrictions of the Green's relations on S).

If S is a semigroup, I is a non-regular ideal of S, J is an ideal of I, then SupersemigroupOfIdeal(J)

is I, since we currently have to use GeneratorsOfSemigroup(I) to compute anything about I other

than its size and membership.

Example
gap> S := FullTransformationSemigroup(8);

<full transformation monoid of degree 8>

gap> x := Transformation([2, 6, 7, 2, 6, 1, 1, 5]);;

gap> D := DClassNC(S, x);

<Green's D-class: Transformation([2, 6, 7, 2, 6, 1, 1, 5])>

gap> R := PrincipalFactor(D);

<Rees 0-matrix semigroup 1050x56 over Group([(3,4), (2,8,7,4,3)])>

gap> S := Semigroup(List([1..10], x-> Random(R)));

<subsemigroup of 1050x56 Rees 0-matrix semigroup with 10 generators>

gap> I := SemigroupIdeal(S, MultiplicativeZero(S));

<regular Rees 0-matrix semigroup ideal with 1 generator>

gap> SupersemigroupOfIdeal(I);

<subsemigroup of 1050x56 Rees 0-matrix semigroup with 10 generators>

gap> J := SemigroupIdeal(I, Representative(MinimalDClass(S)));

<regular Rees 0-matrix semigroup ideal with 1 generator>

gap> Parent(J) = I;

true

gap> SupersemigroupOfIdeal(J) = I;

false

Chapter 4

Determining the structure of a semigroup

In this chapter we describe the functions in Semigroups for determining the structure of a semigroup,

in particular for computing Green's classes and related properties of semigroups.

4.1 Expressing semigroup elements as words in generators

It is possible to express an element of a semigroup as a word in the generators of that semigroup. This

section describes how to accomplish this in Semigroups.

4.1.1 EvaluateWord

. EvaluateWord(gens, w) (operation)

Returns: A semigroup element.

The argument gens should be a collection of generators of a semigroup and the argument w should

be a list of positive integers less than or equal to the length of gens . This operation evaluates the word

w in the generators gens . More precisely, EvaluateWord returns the equivalent of:
Example

Product(List(w, i-> gens[i]));

see also Factorization (4.1.2).

for elements of a semigroup

When gens is a list of elements of a semigroup and w is a list of positive in-

tegers less than or equal to the length of gens , this operation returns the product

gens[w[1]]*gens[w[2]]*...*gens[w[n]] when the length of w is n.

for elements of an inverse semigroup

When gens is a list of elements with a semigroup inverse and w is a list of non-zero integers

whose absolute value does not exceed the length of gens , this operation returns the product

gens[AbsInt(w[1])]^SignInt(w[1])*...*gens[AbsInt(w[n])]^SignInt(w[n])

where n is the length of w .

Note that EvaluateWord(gens, []) returns One(gens) if gens belongs to the category

IsMultiplicativeElementWithOne (Reference: IsMultiplicativeElementWithOne).

35

Semigroups 36

Example
gap> gens:=[Transformation([2, 4, 4, 6, 8, 8, 6, 6]),

> Transformation([2, 7, 4, 1, 4, 6, 5, 2]),

> Transformation([3, 6, 2, 4, 2, 2, 2, 8]),

> Transformation([4, 3, 6, 4, 2, 1, 2, 6]),

> Transformation([4, 5, 1, 3, 8, 5, 8, 2])];;

gap> S:=Semigroup(gens);;

gap> f:=Transformation([1, 4, 6, 1, 7, 2, 7, 6]);;

gap> Factorization(S, f);

[4, 2]

gap> EvaluateWord(gens, last);

Transformation([1, 4, 6, 1, 7, 2, 7, 6])

gap> S:=SymmetricInverseMonoid(10);;

gap> f:=PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);

[3,7][8,1,2,6,9][10,5]

gap> Factorization(S, f);

[-2, -2, -2, -2, -3, -4, -3, -2, -2, -2, -2, -3, -2, 2, 2, 2, 2, 4,

4, 4, 4, 2, 2, 2, 2, 2, 3, 4, -3, -2, -3, -2, -3, -2, 2, 2, 2, 2,

2, 3, 4, -3, -2, -3, -2, -3, -2, 2, 2, 2, 2, 2, 3, 4, -3, -2, -3,

-2, -3, -2, 2, 2, 2, 2, 2, 3, 4, -3, -2, -3, -2, -3, -2, 2, 2, 2,

2, 2, 3, 4, -3, -2, -3, -2, -3, -2, 3, 2, 2, 2, 2, 2, 3, 4, -3, -2,

-3, -2, -3, -2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2]

gap> EvaluateWord(GeneratorsOfSemigroup(S), last);

[3,7][8,1,2,6,9][10,5]

4.1.2 Factorization

. Factorization(S, f) (operation)

Returns: A word in the generators.

for semigroups

When S is a semigroup and f belongs to S , Factorization return a word in the generators

of S that is equal to f . In this case, a word is a list of positive integers where i corresponds to

GeneratorsOfSemigroups(S)[i]. More speci�cally,

Example
EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, f))=f;

for inverse semigroups

When S is a inverse semigroup and f belongs to S , Factorization return a word in

the generators of S that is equal to f . In this case, a word is a list of non-zero in-

tegers where i corresponds to GeneratorsOfSemigroup(S)[i] and -i corresponds to

GeneratorsOfSemigroup(S)[i]^-1. As in the previous case,
Example

EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, f))=f;

Note that Factorization does not return a word of minimum length.

See also EvaluateWord (4.1.1) and GeneratorsOfSemigroup (Reference: GeneratorsOf-

Semigroup).

Semigroups 37

Example
gap> gens:=[Transformation([2, 2, 9, 7, 4, 9, 5, 5, 4, 8]),

> Transformation([4, 10, 5, 6, 4, 1, 2, 7, 1, 2])];;

gap> S:=Semigroup(gens);;

gap> f:=Transformation([1, 10, 2, 10, 1, 2, 7, 10, 2, 7]);;

gap> Factorization(S, f);

[2, 2, 1, 2]

gap> EvaluateWord(gens, last);

Transformation([1, 10, 2, 10, 1, 2, 7, 10, 2, 7])

gap> S:=SymmetricInverseMonoid(8);

<symmetric inverse monoid of degree 8>

gap> f:=PartialPerm([1, 2, 3, 4, 5, 8], [7, 1, 4, 3, 2, 6]);

[5,2,1,7][8,6](3,4)

gap> Factorization(S, f);

[-2, -2, -2, -2, -2, -2, -2, 2, 2, 4, 4, 2, 3, 2, 3, -2, -2, -2, 2,

3, 2, 3, -2, -2, -2, 2, 3, 2, 3, -2, -2, -2, 3, 2, 3, 2, 3, -2, -2,

-2, 3, 2, 3, 2, 3, -2, -2, -2, 2, 3, 2, 3, -2, -2, -2, 2, 3, 2, 3,

-2, -2, -2, 2, 3, 2, 3, -2, -2, -2, 2, 3, 2, 3, -2, -2, -2, 3, 2,

3, 2, 3, -2, -2, -2, 2, 3, 2, 3, -2, -2, -2, 2, 3, 2, 3, -2, -2,

-2, 2, 3, 2, 3, -2, -2, -2, 2, 3, 2, 2, 3, 2, 2, 2, 2]

gap> EvaluateWord(GeneratorsOfSemigroup(S), last);

[5,2,1,7][8,6](3,4)

gap> S:=DualSymmetricInverseMonoid(6);;

gap> f:=S.1*S.2*S.3*S.2*S.1;

<block bijection: [1, 6, -4], [2, -2, -3], [3, -5], [4, -6],

[5, -1]>

gap> Factorization(S, f);

[-2, -2, -2, -2, -2, 4, 2]

gap> EvaluateWord(GeneratorsOfSemigroup(S), last);

<block bijection: [1, 6, -4], [2, -2, -3], [3, -5], [4, -6],

[5, -1]>

4.2 Creating Green's classes

4.2.1 XClassOfYClass

. DClassOfHClass(class) (method)

. DClassOfLClass(class) (method)

. DClassOfRClass(class) (method)

. LClassOfHClass(class) (method)

. RClassOfHClass(class) (method)

Returns: A Green's class.

XClassOfYClass returns the X-class containing the Y-class class where X and Y should be re-

placed by an appropriate choice of D, H, L, and R.

Note that if it is not known to GAP whether or not the representative of class is an element of

the semigroup containing class , then no attempt is made to check this.

The same result can be produced using:

Example
First(GreensXClasses(S), x-> Representative(x) in class);

Semigroups 38

but this might be substantially slower. Note that XClassOfYClass is also likely to be faster than

Example
GreensXClassOfElement(S, Representative(class));

DClass can also be used as a synonym for DClassOfHClass, DClassOfLClass, and

DClassOfRClass; LClass as a synonym for LClassOfHClass; and RClass as a synonym for

RClassOfHClass. See also GreensDClassOfElement (Reference: GreensDClassOfElement) and

GreensDClassOfElementNC (4.2.3).
Example

gap> S := Semigroup(Transformation([1, 3, 2]),

> Transformation([2, 1, 3]), Transformation([3, 2, 1]),

> Transformation([1, 3, 1]));;

gap> R := GreensRClassOfElement(S, Transformation([3, 2, 1]));

<Green's R-class: Transformation([3, 2, 1])>

gap> DClassOfRClass(R);

<Green's D-class: Transformation([3, 2, 1])>

gap> IsGreensDClass(DClassOfRClass(R));

true

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],

> [3, 8, 1, 9, 4, 10, 5, 6]));

<inverse partial perm semigroup of rank 10 with 2 generators>

gap> x := S.1;

[3,7][8,1,2,6,9][10,5]

gap> H := HClass(S, x);

<Green's H-class: [3,7][8,1,2,6,9][10,5]>

gap> R := RClassOfHClass(H);

<Green's R-class: [3,7][8,1,2,6,9][10,5]>

gap> L := LClass(H);

<Green's L-class: <identity partial perm on [1, 2, 5, 6, 7, 9]>>

gap> DClass(R) = DClass(L);

true

gap> DClass(H) = DClass(L);

true

4.2.2 GreensXClassOfElement

. GreensDClassOfElement(X, f) (operation)

. DClass(X, f) (function)

. GreensHClassOfElement(X, f) (operation)

. GreensHClassOfElement(R, i, j) (operation)

. HClass(X, f) (function)

. HClass(R, i, j) (function)

. GreensLClassOfElement(X, f) (operation)

. LClass(X, f) (function)

. GreensRClassOfElement(X, f) (operation)

. RClass(X, f) (function)

Returns: A Green's class.

Semigroups 39

These functions produce essentially the same output as the GAP library functions with the same

names; see GreensDClassOfElement (Reference: GreensDClassOfElement). The main difference

is that these functions can be applied to a wider class of objects:

GreensDClassOfElement and DClass

X must be a semigroup.

GreensHClassOfElement and HClass

X can be a semigroup, R-class, L -class, or D-class. If R is a IxJ Rees matrix semigroup

or a Rees 0-matrix semigroup, and i and j are integers of the corresponding index sets, then

GreensHClassOfElement returns theH -class in row i and column j .

GreensLClassOfElement and LClass

X can be a semigroup or D-class.

GreensRClassOfElement and RClass

X can be a semigroup or D-class.

Note that GreensXClassOfElement and XClass are synonyms and have identical output. The shorter

command is provided for the sake of convenience.

4.2.3 GreensXClassOfElementNC

. GreensDClassOfElementNC(X, f) (operation)

. DClassNC(X, f) (function)

. GreensHClassOfElementNC(X, f) (operation)

. HClassNC(X, f) (function)

. GreensLClassOfElementNC(X, f) (operation)

. LClassNC(X, f) (function)

. GreensRClassOfElementNC(X, f) (operation)

. RClassNC(X, f) (function)

Returns: A Green's class.

These functions are essentially the same as GreensDClassOfElement (4.2.2) except that no effort

is made to verify if f is an element of X . More precisely, GreensXClassOfElementNC and XClassNC

�rst check if f has already been shown to be an element of X . If it is not known to GAP if f is an

element of X , then no further attempt to verify this is made.

Note that GreensXClassOfElementNC and XClassNC are synonyms and have identical output.

The shorter command is provided for the sake of convenience.

It can be quicker to compute the class of an element using GreensRClassOfElementNC, say, than

using GreensRClassOfElement if it is known a priori that f is an element of X . On the other hand,

if f is not an element of X , then the results of this computation are unpredictable.

For example, if

Example
x := Transformation([15, 18, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20]);

in the semigroup X of order-preserving mappings on 20 points, then

Example
GreensRClassOfElementNC(X, x);

Semigroups 40

returns an answer relatively quickly, whereas

Example
GreensRClassOfElement(X, x)

can take a sign�cant amount of time to return a value.

See also GreensRClassOfElement (Reference: GreensRClassOfElement) and

RClassOfHClass (4.2.1).
Example

gap> S := RandomTransformationSemigroup(2,1000);;

gap> x := [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1];;

gap> x := EvaluateWord(Generators(S), x);;

gap> R := GreensRClassOfElementNC(S, x);;

gap> Size(R);

1

gap> L := GreensLClassOfElementNC(S, x);;

gap> Size(L);

1

gap> x := PartialPerm([1, 2, 3, 4, 7, 8, 9, 10],

> [2, 3, 4, 5, 6, 8, 10, 11]);;

gap> L := LClass(POI(13), x);

<Green's L-class: [1,2,3,4,5,6,8,11][7,10]>

gap> Size(L);

1287

4.2.4 GroupHClass

. GroupHClass(class) (attribute)

Returns: A groupH -class of the D-class class if it is regular and fail if it is not.

GroupHClass is a synonym for GroupHClassOfGreensDClass (Reference: GroupHClassOf-

GreensDClass).

See also IsGroupHClass (Reference: IsGroupHClass), IsRegularDClass (Reference: Is-

RegularDClass), IsRegularClass (4.4.4), and IsRegularSemigroup (4.6.14).

Example
gap> S := Semigroup(Transformation([2, 6, 7, 2, 6, 1, 1, 5]),

> Transformation([3, 8, 1, 4, 5, 6, 7, 1]));;

gap> IsRegularSemigroup(S);

false

gap> iter := IteratorOfDClasses(S);;

gap> repeat D := NextIterator(iter); until IsRegularDClass(D);

gap> D;

<Green's D-class: Transformation([6, 1, 1, 6, 1, 2, 2, 6])>

gap> NrIdempotents(D);

12

gap> NrRClasses(D);

8

gap> NrLClasses(D);

4

gap> GroupHClass(D);

<Green's H-class: Transformation([1, 2, 2, 1, 2, 6, 6, 1])>

gap> GroupHClassOfGreensDClass(D);

<Green's H-class: Transformation([1, 2, 2, 1, 2, 6, 6, 1])>

Semigroups 41

gap> StructureDescription(GroupHClass(D));

"S3"

gap> repeat D := NextIterator(iter); until not IsRegularDClass(D);

gap> D;

<Green's D-class: Transformation([7, 5, 2, 2, 6, 1, 1, 2])>

gap> IsRegularDClass(D);

false

gap> GroupHClass(D);

fail

gap> S := InverseSemigroup([PartialPerm([1, 2, 3, 5], [2, 1, 6, 3]),

> PartialPerm([1, 2, 3, 6], [3, 5, 2, 6])]);;

gap> x := PartialPerm([1 .. 3], [6, 3, 1]);;

gap> First(DClasses(S), x-> not IsTrivial(GroupHClass(x)));

<Green's D-class: <identity partial perm on [1, 2]>>

gap> StructureDescription(GroupHClass(last));

"C2"

4.3 Iterators and enumerators of classes and representatives

4.3.1 GreensXClasses

. GreensDClasses(obj) (method)

. DClasses(obj) (method)

. GreensHClasses(obj) (method)

. HClasses(obj) (method)

. GreensJClasses(obj) (method)

. JClasses(obj) (method)

. GreensLClasses(obj) (method)

. LClasses(obj) (method)

. GreensRClasses(obj) (method)

. RClasses(obj) (method)

Returns: A list of Green's classes.

These functions produce essentially the same output as the GAP library functions with the same

names; see GreensDClasses (Reference: GreensDClasses). The main difference is that these func-

tions can be applied to a wider class of objects:

GreensDClasses and DClasses

X should be a semigroup.

GreensHClasses and HClasses

X can be a semigroup,R-class,L -class, or D-class.

GreensLClasses and LClasses

X can be a semigroup or D-class.

GreensRClasses and RClasses

X can be a semigroup or D-class.

Note that GreensXClasses and XClasses are synonyms and have identical output. The shorter

command is provided for the sake of convenience.

Semigroups 42

See also DClassReps (4.3.4), IteratorOfDClassReps (4.3.2), IteratorOfDClasses (4.3.3),

and NrDClasses (4.4.6).
Example

gap> S := Semigroup(Transformation([3, 4, 4, 4]),

> Transformation([4, 3, 1, 2]));;

gap> GreensDClasses(S);

[<Green's D-class: Transformation([3, 4, 4, 4])>,

<Green's D-class: Transformation([4, 3, 1, 2])>,

<Green's D-class: Transformation([4, 4, 4, 4])>]

gap> GreensRClasses(S);

[<Green's R-class: Transformation([3, 4, 4, 4])>,

<Green's R-class: Transformation([4, 3, 1, 2])>,

<Green's R-class: Transformation([4, 4, 4, 4])>,

<Green's R-class: Transformation([4, 4, 3, 4])>,

<Green's R-class: Transformation([4, 3, 4, 4])>,

<Green's R-class: Transformation([4, 4, 4, 3])>]

gap> D := GreensDClasses(S)[1];

<Green's D-class: Transformation([3, 4, 4, 4])>

gap> GreensLClasses(D);

[<Green's L-class: Transformation([3, 4, 4, 4])>,

<Green's L-class: Transformation([1, 2, 2, 2])>]

gap> GreensRClasses(D);

[<Green's R-class: Transformation([3, 4, 4, 4])>,

<Green's R-class: Transformation([4, 4, 3, 4])>,

<Green's R-class: Transformation([4, 3, 4, 4])>,

<Green's R-class: Transformation([4, 4, 4, 3])>]

gap> R := GreensRClasses(D)[1];

<Green's R-class: Transformation([3, 4, 4, 4])>

gap> GreensHClasses(R);

[<Green's H-class: Transformation([3, 4, 4, 4])>,

<Green's H-class: Transformation([1, 2, 2, 2])>]

gap> S := InverseSemigroup(PartialPerm([1, 2, 3], [2, 4, 1]),

> PartialPerm([1, 3, 4], [3, 4, 1]));;

gap> GreensDClasses(S);

[<Green's D-class: <identity partial perm on [1, 2, 4]>>,

<Green's D-class: <identity partial perm on [1, 3, 4]>>,

<Green's D-class: <identity partial perm on [2, 4]>>,

<Green's D-class: <identity partial perm on [4]>>,

<Green's D-class: <empty partial perm>>]

gap> GreensLClasses(S);

[<Green's L-class: <identity partial perm on [1, 2, 4]>>,

<Green's L-class: [4,2,1,3]>,

<Green's L-class: <identity partial perm on [1, 3, 4]>>,

<Green's L-class: <identity partial perm on [2, 4]>>,

<Green's L-class: [2,3][4,1]>, <Green's L-class: [4,2,1]>,

<Green's L-class: [4,2,3]>, <Green's L-class: [2,4,3]>,

<Green's L-class: [2,1](4)>,

<Green's L-class: <identity partial perm on [4]>>,

<Green's L-class: [4,1]>, <Green's L-class: [4,3]>,

<Green's L-class: [4,2]>, <Green's L-class: <empty partial perm>>]

gap> D := GreensDClasses(S)[3];

<Green's D-class: <identity partial perm on [2, 4]>>

gap> GreensLClasses(D);

Semigroups 43

[<Green's L-class: <identity partial perm on [2, 4]>>,

<Green's L-class: [2,3][4,1]>, <Green's L-class: [4,2,1]>,

<Green's L-class: [4,2,3]>, <Green's L-class: [2,4,3]>,

<Green's L-class: [2,1](4)>]

gap> GreensRClasses(D);

[<Green's R-class: <identity partial perm on [2, 4]>>,

<Green's R-class: [1,4][3,2]>, <Green's R-class: [1,2,4]>,

<Green's R-class: [3,2,4]>, <Green's R-class: [3,4,2]>,

<Green's R-class: [1,2](4)>]

4.3.2 IteratorOfXClassReps

. IteratorOfDClassReps(S) (function)

. IteratorOfHClassReps(S) (function)

. IteratorOfLClassReps(S) (function)

. IteratorOfRClassReps(S) (function)

Returns: An iterator.

Returns an iterator of the representatives of the Green's classes contained in the semigroup S . See

(Reference: Iterators) for more information on iterators.

See also GreensRClasses (Reference: GreensRClasses), GreensRClasses (4.3.1), and

IteratorOfRClasses (4.3.3).

Example
gap> gens := [Transformation([3, 2, 1, 5, 4]),

> Transformation([5, 4, 3, 2, 1]),

> Transformation([5, 4, 3, 2, 1]), Transformation([5, 5, 4, 5, 1]),

> Transformation([4, 5, 4, 3, 3])];;

gap> S := Semigroup(gens);;

gap> iter := IteratorOfRClassReps(S);

<iterator>

gap> NextIterator(iter);

Transformation([3, 2, 1, 5, 4])

gap> NextIterator(iter);

Transformation([5, 5, 4, 5, 1])

gap> iter;

<iterator>

gap> file := Concatenation(SemigroupsDir(), "/tst/test.gz");;

gap> S := InverseSemigroup(ReadGenerators(file, 1377));

<inverse partial perm semigroup of rank 983 with 2 generators>

gap> NrMovedPoints(S);

983

gap> iter := IteratorOfLClassReps(S);

<iterator>

gap> NextIterator(iter);

<partial perm on 634 pts with degree 1000, codegree 1000>

4.3.3 IteratorOfXClasses

. IteratorOfDClasses(S) (function)

. IteratorOfHClasses(S) (function)

. IteratorOfLClasses(S) (function)

Semigroups 44

. IteratorOfRClasses(S) (function)

Returns: An iterator.

Returns an iterator of the Green's classes in the semigroup S . See (Reference: Iterators) for

more information on iterators.

This function is useful if you are, for example, looking for an R-class of a semigroup with a

particular property but do not necessarily want to compute all of theR-classes.

See also GreensRClasses (4.3.1), GreensRClasses (Reference: GreensRClasses),

NrRClasses (4.4.6), and IteratorOfRClassReps (4.3.2).

The transformation semigroup in the example below has 25147892 elements but it only takes a

fraction of a second to �nd a non-trivial R-class. The inverse semigroup of partial permutations in

the example below has size 158122047816 but it only takes a fraction of a second to �nd an R-class

with more than 1000 elements.
Example

gap> gens := [Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 1]),

> Transformation([3, 2, 8, 8, 4, 4, 8, 6, 5, 7]),

> Transformation([4, 10, 6, 6, 1, 2, 4, 10, 9, 7]),

> Transformation([6, 2, 2, 4, 9, 9, 5, 10, 1, 8]),

> Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 2]),

> Transformation([6, 8, 1, 10, 6, 4, 9, 1, 9, 4]),

> Transformation([8, 6, 2, 3, 3, 4, 8, 6, 2, 9]),

> Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 5]),

> Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2]),

> Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 10])];;

gap> S := Semigroup(gens);;

gap> iter := IteratorOfRClasses(S);

<iterator>

gap> for R in iter do

> if Size(R)>1 then break; fi;

> od;

gap> R;

<Green's R-class: Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 2])>

gap> Size(R);

21600

gap> S := InverseSemigroup(

> [PartialPerm([1, 2, 3, 4, 5, 6, 7, 10, 11, 19, 20],

> [19, 4, 11, 15, 3, 20, 1, 14, 8, 13, 17]),

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 14, 15, 16, 17],

> [15, 14, 20, 19, 4, 5, 1, 13, 11, 10, 3]),

> PartialPerm([1, 2, 4, 6, 7, 8, 9, 10, 14, 15, 18],

> [7, 2, 17, 10, 1, 19, 9, 3, 11, 16, 18]),

> PartialPerm([1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16],

> [8, 3, 18, 1, 4, 13, 12, 7, 19, 20, 2, 11]),

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 16, 17, 20],

> [7, 17, 13, 4, 6, 9, 18, 10, 11, 19, 5, 2, 8]),

> PartialPerm([1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18],

> [10, 20, 11, 7, 13, 8, 4, 9, 2, 18, 17, 6, 15]),

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 17, 18],

> [10, 20, 18, 1, 14, 16, 9, 5, 15, 4, 8, 12, 19, 11]),

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 19, 20],

> [13, 6, 1, 2, 11, 7, 16, 18, 9, 10, 4, 14, 15, 5, 17]),

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 20],

> [5, 3, 12, 9, 20, 15, 8, 16, 13, 1, 17, 11, 14, 10, 2]),

Semigroups 45

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 17, 18, 19, 20],

> [8, 3, 9, 20, 2, 12, 14, 15, 4, 18, 13, 1, 17, 19, 5])]);;

gap> iter := IteratorOfRClasses(S);

<iterator>

gap> repeat r := NextIterator(iter); until Size(r)>1000;

gap> r;

<Green's R-class: [8,3][11,5][13,1][15,2][17,6][19,7]>

gap> Size(r);

10020240

4.3.4 XClassReps

. DClassReps(obj) (attribute)

. HClassReps(obj) (attribute)

. LClassReps(obj) (attribute)

. RClassReps(obj) (attribute)

Returns: A list of representatives.

XClassReps returns a list of the representatives of the Green's classes of obj , which can be a

semigroup, D-,L -, orR-class where appropriate.

The same output can be obtained by calling, for example:
Example

List(GreensXClasses(obj), Representative);

Note that if the Green's classes themselves are not required, then XClassReps will return an answer

more quickly than the above, since the Green's class objects are not created.

See also GreensDClasses (4.3.1), IteratorOfDClassReps (4.3.2), IteratorOfDClasses

(4.3.3), and NrDClasses (4.4.6).
Example

gap> S := Semigroup(Transformation([3, 4, 4, 4]),

> Transformation([4, 3, 1, 2]));;

gap> DClassReps(S);

[Transformation([3, 4, 4, 4]), Transformation([4, 3, 1, 2]),

Transformation([4, 4, 4, 4])]

gap> LClassReps(S);

[Transformation([3, 4, 4, 4]), Transformation([1, 2, 2, 2]),

Transformation([4, 3, 1, 2]), Transformation([4, 4, 4, 4]),

Transformation([2, 2, 2, 2]), Transformation([3, 3, 3, 3]),

Transformation([1, 1, 1, 1])]

gap> D := GreensDClasses(S)[1];

<Green's D-class: Transformation([3, 4, 4, 4])>

gap> LClassReps(D);

[Transformation([3, 4, 4, 4]), Transformation([1, 2, 2, 2])]

gap> RClassReps(D);

[Transformation([3, 4, 4, 4]), Transformation([4, 4, 3, 4]),

Transformation([4, 3, 4, 4]), Transformation([4, 4, 4, 3])]

gap> R := GreensRClasses(D)[1];;

gap> HClassReps(R);

[Transformation([3, 4, 4, 4]), Transformation([1, 2, 2, 2])]

gap> S := SymmetricInverseSemigroup(6);;

gap> e := InverseSemigroup(Idempotents(S));;

gap> M := MunnSemigroup(e);;

Semigroups 46

gap> DClassReps(M);

[<identity partial perm on [51]>,

<identity partial perm on [27, 51]>,

<identity partial perm on [15, 27, 50, 51]>,

<identity partial perm on [8, 15, 26, 27, 49, 50, 51, 64]>,

<identity partial perm on

[4, 8, 14, 15, 25, 26, 27, 48, 49, 50, 51, 60, 61, 62, 63, 64]>,

<identity partial perm on

[2, 4, 7, 8, 13, 14, 15, 21, 25, 26, 27, 29, 34, 39, 44, 48, 49, \

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]>,

<identity partial perm on

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1\

9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,\

37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 5\

4, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]>]

gap> L := LClassNC(M, PartialPerm([51, 63], [51, 47]));;

gap> HClassReps(L);

[<identity partial perm on [47, 51]>, [27,47](51), [50,47](51),

[59,47](51), [63,47](51), [64,47](51)]

4.4 Attributes and properties directly related to Green's classes

4.4.1 Less than for Green's classes

. \<(left-expr, right-expr) (method)

Returns: true or false.

The Green's class left-expr is less than or equal to right-expr if they belong to the same

semigroup and the representative of left-expr is less than the representative of right-expr under

<; see also Representative (Reference: Representative).

Please note that this is not the usual order on the Green's classes of a semigroup as de�ned in

(Reference: Green's Relations). See also IsGreensLessThanOrEqual (Reference: IsGreens-

LessThanOrEqual).
Example

gap> S := FullTransformationSemigroup(4);;

gap> A := GreensRClassOfElement(S, Transformation([2, 1, 3, 1]));

<Green's R-class: Transformation([2, 1, 3, 1])>

gap> B := GreensRClassOfElement(S, Transformation([1, 2, 3, 4]));

<Green's R-class: IdentityTransformation>

gap> A < B;

false

gap> B < A;

true

gap> IsGreensLessThanOrEqual(A,B);

true

gap> IsGreensLessThanOrEqual(B,A);

false

gap> S := SymmetricInverseSemigroup(4);;

gap> A := GreensJClassOfElement(S, PartialPerm([1 .. 3], [1, 3, 4]));

<Green's D-class: <identity partial perm on [1, 2, 3]>>

gap> B := GreensJClassOfElement(S, PartialPerm([1, 2], [3, 1]));

<Green's D-class: <identity partial perm on [1, 2]>>

Semigroups 47

gap> A < B;

false

gap> B < A;

true

gap> IsGreensLessThanOrEqual(A, B);

false

gap> IsGreensLessThanOrEqual(B, A);

true

4.4.2 InjectionPrincipalFactor

. InjectionPrincipalFactor(D) (attribute)

. IsomorphismReesMatrixSemigroup(D) (attribute)

Returns: A injective mapping.

If the D-class D is a subsemigroup of a semigroup S, then the principal factor of D is just D itself.

If D is not a subsemigroup of S, then the principal factor of D is the semigroup with elements D and a

new element 0 with multiplication of x;y 2 D de�ned by:

xy=

�
x� y (in S) if x� y 2 D

0 if xy 62 D:

InjectionPrincipalFactor returns an injective function from theD-class D to a Rees matrix semi-

group, which contains the principal factor of D as a subsemigroup.

If D is a subsemigroup of its parent semigroup, then the function returned by

InjectionPrincipalFactor or IsomorphismReesMatrixSemigroup is an isomorphism from D

to a Rees matrix semigroup; see ReesMatrixSemigroup (Reference: ReesMatrixSemigroup).

If D is not a semigroup, then the function returned by InjectionPrincipalFactor is an

injective function from D to a Rees 0-matrix semigroup isomorphic to the principal factor of

D ; see ReesZeroMatrixSemigroup (Reference: ReesZeroMatrixSemigroup). In this case,

IsomorphismReesMatrixSemigroup returns an error.

See also PrincipalFactor (4.4.3).

Example
gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],

> [3, 8, 1, 9, 4, 10, 5, 6]));;

gap> x := PartialPerm([1, 2, 5, 6, 7, 9], [1, 2, 5, 6, 7, 9]);;

gap> d := GreensDClassOfElement(S, x);

<Green's D-class: <identity partial perm on [1, 2, 5, 6, 7, 9]>>

gap> InjectionPrincipalFactor(d);;

gap> rms := Range(last);

<Rees 0-matrix semigroup 3x3 over Group(())>

gap> MatrixOfReesZeroMatrixSemigroup(rms);

[[(), 0, 0], [0, (), 0], [0, 0, ()]]

gap> Size(rms);

10

gap> Size(d);

9

gap> S := Semigroup(

> Bipartition([[1, 2, 3, -3, -5], [4], [5, -2], [-1, -4]]),

Semigroups 48

> Bipartition([[1, 3, 5], [2, 4, -3], [-1, -2, -4, -5]]),

> Bipartition([[1, 5, -2, -4], [2, 3, 4, -1, -5], [-3]]),

> Bipartition([[1, 5, -1, -2, -3], [2, 4, -4], [3, -5]]));;

gap> D := DClasses(S)[3];

<Green's D-class: <bipartition: [1, 5, -2, -4], [2, 3, 4, -1, -5]

, [-3]>>

gap> inj := InjectionPrincipalFactor(D);

MappingByFunction(<Green's D-class: <bipartition: [1, 5, -2, -4],

[2, 3, 4, -1, -5], [-3]>>, <Rees matrix semigroup 1x1 over

Group([(1,2)])>, function(f) ... end, function(x) ... end)

4.4.3 PrincipalFactor

. PrincipalFactor(D) (attribute)

Returns: A Rees matrix semigroup.

PrincipalFactor(D) is just shorthand for Range(InjectionPrincipalFactor(D)), where

D is a D-class of semigroup; see InjectionPrincipalFactor (4.4.2) for more details.

Example
gap> S := Semigroup([PartialPerm([1, 2, 3], [1, 3, 4]),

> PartialPerm([1, 2, 3], [2, 5, 3]),

> PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),

> PartialPerm([1, 3, 5], [5, 1, 3])]);;

gap> PrincipalFactor(MinimalDClass(S));

<Rees matrix semigroup 1x1 over Group(())>

gap> MultiplicativeZero(S);

<empty partial perm>

gap> S := Semigroup(

> Bipartition([[1, 2, 3, 4, 5, -1, -3], [-2, -5], [-4]]),

> Bipartition([[1, -5], [2, 3, 4, 5, -1, -3], [-2, -4]]),

> Bipartition([[1, 5, -4], [2, 4, -1, -5], [3, -2, -3]]));;

gap> D := MinimalDClass(S);

<Green's D-class: <bipartition: [1, 2, 3, 4, 5, -1, -3],

[-2, -5], [-4]>>

gap> PrincipalFactor(D);

<Rees matrix semigroup 1x5 over Group(())>

4.4.4 IsRegularClass

. IsRegularClass(class) (property)

Returns: true or false.

This function returns true if class is a regular Green's class and false if it

is not. See also IsRegularDClass (Reference: IsRegularDClass), IsGroupHClass

(Reference: IsGroupHClass), GroupHClassOfGreensDClass (Reference: GroupHClassOf-

GreensDClass), GroupHClass (4.2.4), NrIdempotents (4.5.4), Idempotents (4.5.3), and

IsRegularSemigroupElement (Reference: IsRegularSemigroupElement).

The function IsRegularDClass produces the same output as the GAP library functions with the

same name; see IsRegularDClass (Reference: IsRegularDClass).

Example
gap> S := Monoid(Transformation([10, 8, 7, 4, 1, 4, 10, 10, 7, 2]),

> Transformation([5, 2, 5, 5, 9, 10, 8, 3, 8, 10]));;

Semigroups 49

gap> f := Transformation([1, 1, 10, 8, 8, 8, 1, 1, 10, 8]);;

gap> R := RClass(S, f);;

gap> IsRegularClass(R);

true

gap> S := Monoid(Transformation([2,3,4,5,1,8,7,6,2,7]),

> Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 2]));;

gap> f := Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 2]);;

gap> R := RClass(S, f);;

gap> IsRegularClass(R);

false

gap> NrIdempotents(R);

0

gap> S := Semigroup(Transformation([2, 1, 3, 1]),

> Transformation([3, 1, 2, 1]), Transformation([4, 2, 3, 3]));;

gap> f := Transformation([4, 2, 3, 3]);;

gap> L := GreensLClassOfElement(S, f);;

gap> IsRegularClass(L);

false

gap> R := GreensRClassOfElement(S, f);;

gap> IsRegularClass(R);

false

gap> g := Transformation([4, 4, 4, 4]);;

gap> IsRegularSemigroupElement(S, g);

true

gap> IsRegularClass(LClass(S, g));

true

gap> IsRegularClass(RClass(S, g));

true

gap> IsRegularDClass(DClass(S, g));

true

gap> DClass(S, g)=RClass(S, g);

true

4.4.5 NrRegularDClasses

. NrRegularDClasses(S) (attribute)

. RegularDClasses(S) (attribute)

Returns: A positive integer, or a list.

NrRegularDClasses returns the number of regular D-classes of the semigroup S .

RegularDClasses returns a list of the regular D-classes of the semigroup S .

See also IsRegularClass (4.4.4) and IsRegularDClass (Reference: IsRegularDClass).

Example
gap> S := Semigroup([Transformation([1, 3, 4, 1, 3, 5]),

> Transformation([5, 1, 6, 1, 6, 3])]);;

gap> NrRegularDClasses(S);

3

gap> NrDClasses(S);

7

gap> RegularDClasses(S);

[<Green's D-class: Transformation([1, 4, 1, 1, 4, 3])>,

<Green's D-class: Transformation([1, 1, 1, 1, 1, 4])>,

Semigroups 50

<Green's D-class: Transformation([1, 1, 1, 1, 1, 1])>]

4.4.6 NrXClasses

. NrDClasses(obj) (attribute)

. NrHClasses(obj) (attribute)

. NrLClasses(obj) (attribute)

. NrRClasses(obj) (attribute)

Returns: A positive integer.

NrXClasses returns the number of Green's classes in obj where obj can be a semigroup, D-,

L -, or R-class where appropriate. If the actual Green's classes are not required, then it is more

ef�cient to use
Example

NrHClasses(obj)

than
Example

Length(HClasses(obj))

since the Green's classes themselves are not created when NrXClasses is called.

See also GreensRClasses (4.3.1), GreensRClasses (Reference: GreensRClasses),

IteratorOfRClasses (4.3.3), and IteratorOfRClassReps (4.3.2).
Example

gap> gens := [Transformation([1, 2, 5, 4, 3, 8, 7, 6]),

> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),

> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),

> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),

> Transformation([5, 2, 3, 6, 3, 4, 7, 4])];;

gap> S := Semigroup(gens);;

gap> x := Transformation([2, 5, 4, 7, 4, 3, 6, 3]);;

gap> R := RClass(S, x);

<Green's R-class: Transformation([2, 5, 4, 7, 4, 3, 6, 3])>

gap> NrHClasses(R);

12

gap> D := DClass(R);

<Green's D-class: Transformation([2, 5, 4, 7, 4, 3, 6, 3])>

gap> NrHClasses(D);

72

gap> L := LClass(S, x);

<Green's L-class: Transformation([2, 5, 4, 7, 4, 3, 6, 3])>

gap> NrHClasses(L);

6

gap> NrHClasses(S);

1555

gap> gens := [Transformation([4, 6, 5, 2, 1, 3]),

> Transformation([6, 3, 2, 5, 4, 1]),

> Transformation([1, 2, 4, 3, 5, 6]),

> Transformation([3, 5, 6, 1, 2, 3]),

> Transformation([5, 3, 6, 6, 6, 2]),

> Transformation([2, 3, 2, 6, 4, 6]),

> Transformation([2, 1, 2, 2, 2, 4]),

Semigroups 51

> Transformation([4, 4, 1, 2, 1, 2])];;

gap> S := Semigroup(gens);;

gap> NrRClasses(S);

150

gap> Size(S);

6342

gap> x := Transformation([1, 3, 3, 1, 3, 5]);;

gap> D := DClass(S, x);

<Green's D-class: Transformation([2, 4, 2, 2, 2, 1])>

gap> NrRClasses(D);

87

gap> S := SymmetricInverseSemigroup(10);;

gap> NrDClasses(S); NrRClasses(S); NrHClasses(S); NrLClasses(S);

11

1024

184756

1024

gap> S := POPI(10);;

gap> NrDClasses(S);

11

gap> NrRClasses(S);

1024

4.4.7 PartialOrderOfDClasses

. PartialOrderOfDClasses(S) (attribute)

Returns: The partial order of the D-classes of S .

Returns a list list where list[i] contains every j such that GreensDClasses(S)[j] is im-

mediately less than GreensDClasses(S)[i] in the partial order of D- classes of S . There might be

other indices in list, and it may or may not include i. The re�exive transitive closure of the relation

de�ned by list is the partial order of D-classes of S .

The partial order on the D-classes is de�ned by x� y if and only if S1xS1 is a subset of S1yS1.

See also GreensDClasses (4.3.1), GreensDClasses (Reference: GreensDClasses),

IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual), and \< (4.4.1).

Example
gap> S := Semigroup(Transformation([2, 4, 1, 2]),

> Transformation([3, 3, 4, 1]));;

gap> PartialOrderOfDClasses(S);

[[3], [2, 3], [3, 4], [4]]

gap> IsGreensLessThanOrEqual(GreensDClasses(S)[1], GreensDClasses(S)[2]);

false

gap> IsGreensLessThanOrEqual(GreensDClasses(S)[2], GreensDClasses(S)[1]);

false

gap> IsGreensLessThanOrEqual(GreensDClasses(S)[3], GreensDClasses(S)[1]);

true

gap> S := InverseSemigroup(PartialPerm([1, 2, 3], [1, 3, 4]),

> PartialPerm([1, 3, 5], [5, 1, 3]));;

gap> Size(S);

58

gap> PartialOrderOfDClasses(S);

[[1, 3], [2, 3], [3, 4], [4, 5], [5]]

Semigroups 52

gap> IsGreensLessThanOrEqual(GreensDClasses(S)[1], GreensDClasses(S)[2]);

false

gap> IsGreensLessThanOrEqual(GreensDClasses(S)[5], GreensDClasses(S)[2]);

true

gap> IsGreensLessThanOrEqual(GreensDClasses(S)[3], GreensDClasses(S)[4]);

false

gap> IsGreensLessThanOrEqual(GreensDClasses(S)[4], GreensDClasses(S)[3]);

true

4.4.8 SchutzenbergerGroup

. SchutzenbergerGroup(class) (attribute)

Returns: A group.

SchutzenbergerGroup returns the generalized Schutzenberger group (de�ned below) of theR-,

D-,L -, orH -class class .

If f is an element of a semigroup of transformations or partial permutations and im(f) denotes

the image of f, then the generalized Schutzenberger group of im(f) is the permutation group

fgjim(f) : im(f �g) = im(f)g:

The generalized Schutzenberger group of the kernel ker(f) of a transformation f or the domain

dom(f) of a partial permutation f is de�ned analogously.

The generalized Schutzenberger group of a Green's class is then de�ned as follows.

R-class

The generalized Schutzenberger group of the image or range of the representative of the R-

class.

L -class

The generalized Schutzenberger group of the kernel or domain of the representative of the L -

class.

H -class

The intersection of the generalized Schutzenberger groups of the R- and L -class containing

theH -class.

D-class

The intersection of the generalized Schutzenberger groups of the R- and L -class containing

the representative of the D-class.

Example
gap> S := Semigroup(Transformation([4, 4, 3, 5, 3]),

> Transformation([5, 1, 1, 4, 1]),

> Transformation([5, 5, 4, 4, 5]));;

gap> f := Transformation([5, 5, 4, 4, 5]);;

gap> SchutzenbergerGroup(RClass(S, f));

Group([(4,5)])

gap> S := InverseSemigroup(

> [PartialPerm([1, 2, 3, 7], [9, 2, 4, 8]),

> PartialPerm([1, 2, 6, 7, 8, 9, 10], [6, 8, 4, 5, 9, 1, 3]),

> PartialPerm([1, 2, 3, 5, 6, 7, 8, 9], [7, 4, 1, 6, 9, 5, 2, 3])]);;

Semigroups 53

gap> List(DClasses(S), SchutzenbergerGroup);

[Group(()), Group(()), Group(()), Group(()), Group([(1,9,8), (8,

9)]), Group([(4,9)]), Group(()), Group(()), Group(()),

Group(()), Group(()), Group(()), Group(()), Group(()), Group(()),

Group(()), Group([(2,5)(3,7)]), Group([(1,7,5,6,9,3)]),

Group(()), Group(()), Group(()), Group(()), Group(())]

4.4.9 MinimalDClass

. MinimalDClass(S) (attribute)

Returns: The minimal D-class of a semigroup.

The minimal ideal of a semigroup is the least ideal with respect to containment. MinimalDClass

returns the D-class corresponding to the minimal ideal of the semigroup S . Equivalently,

MinimalDClass returns the minimal D-class with respect to the partial order of D-classes.

It is signi�cantly easier to �nd the minimal D-class of a semigroup, than to �nd its D-classes.

See also PartialOrderOfDClasses (4.4.7), IsGreensLessThanOrEqual (Reference: Is-

GreensLessThanOrEqual), MinimalIdeal (4.5.10) and RepresentativeOfMinimalIdeal

(4.5.11).
Example

gap> D := MinimalDClass(JonesMonoid(8));

<Green's D-class: <bipartition: [1, 2], [3, 4], [5, 6],

[7, 8], [-1, -2], [-3, -4], [-5, -6], [-7, -8]>>

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 5, 7, 8, 9], [2, 6, 9, 1, 5, 3, 8]),

> PartialPerm([1, 3, 4, 5, 7, 8, 9], [9, 4, 10, 5, 6, 7, 1]));;

gap> MinimalDClass(S);

<Green's D-class: <empty partial perm>>

4.4.10 MaximalDClasses

. MaximalDClasses(S) (attribute)

Returns: The maximal D-classes of a semigroup.

MaximalDClasses returns the maximal D-classes with respect to the partial order of D-classes.

See also PartialOrderOfDClasses (4.4.7), IsGreensLessThanOrEqual (Reference: Is-

GreensLessThanOrEqual), and MinimalDClass (4.4.9).
Example

gap> MaximalDClasses(BrauerMonoid(8));

[<Green's D-class: <block bijection: [1, -1], [2, -2],

[3, -3], [4, -4], [5, -5], [6, -6], [7, -7],

[8, -8]>>]

gap> MaximalDClasses(FullTransformationMonoid(5));

[<Green's D-class: IdentityTransformation>]

gap> S := Semigroup(

> PartialPerm([1, 2, 3, 4, 5, 6, 7], [3, 8, 1, 4, 5, 6, 7]),

> PartialPerm([1, 2, 3, 6, 8], [2, 6, 7, 1, 5]),

> PartialPerm([1, 2, 3, 4, 6, 8], [4, 3, 2, 7, 6, 5]),

> PartialPerm([1, 2, 4, 5, 6, 7, 8], [7, 1, 4, 2, 5, 6, 3]));;

gap> MaximalDClasses(S);

[<Green's D-class: [2,8](1,3)(4)(5)(6)(7)>,

<Green's D-class: [8,3](1,7,6,5,2)(4)>]

Semigroups 54

4.4.11 StructureDescriptionSchutzenbergerGroups

. StructureDescriptionSchutzenbergerGroups(S) (attribute)

Returns: Distinct structure descriptions of the Schutzenberger groups of a semigroup.

StructureDescriptionSchutzenbergerGroups returns the distinct values of

StructureDescription (Reference: StructureDescription) when it is applied to the Schutzen-

berger groups of theR-classes of the semigroup S .
Example

gap> S := Semigroup(PartialPerm([1, 2, 3], [2, 5, 4]),

> PartialPerm([1, 2, 3], [4, 1, 2]),

> PartialPerm([1, 2, 3], [5, 2, 3]),

> PartialPerm([1, 2, 4, 5], [2, 1, 4, 3]),

> PartialPerm([1, 2, 5], [2, 3, 5]),

> PartialPerm([1, 2, 3, 5], [2, 3, 5, 4]),

> PartialPerm([1, 2, 3, 5], [4, 2, 5, 1]),

> PartialPerm([1, 2, 3, 5], [5, 2, 4, 3]),

> PartialPerm([1, 2, 5], [5, 4, 3]));;

gap> StructureDescriptionSchutzenbergerGroups(S);

["1", "C2", "S3"]

gap> S := Monoid(

> Bipartition([[1, 2, 5, -1, -2], [3, 4, -3, -5], [-4]]),

> Bipartition([[1, 2, -2], [3, -1], [4], [5], [-3, -4], [-5]]),

> Bipartition([[1], [2, 3, -5], [4, -3], [5, -2], [-1, -4]]));

<bipartition monoid of degree 5 with 3 generators>

gap> StructureDescriptionSchutzenbergerGroups(S);

["1", "C2"]

4.4.12 StructureDescriptionMaximalSubgroups

. StructureDescriptionMaximalSubgroups(S) (attribute)

Returns: Distinct structure descriptions of the maximal subgroups of a semigroup.

StructureDescriptionMaximalSubgroups returns the distinct values of

StructureDescription (Reference: StructureDescription) when it is applied to the maxi-

mal subgroups of the semigroup S .
Example

gap> S := DualSymmetricInverseSemigroup(6);

<inverse bipartition monoid of degree 6 with 3 generators>

gap> StructureDescriptionMaximalSubgroups(S);

["1", "C2", "S3", "S4", "S5", "S6"]

gap> S := Semigroup(PartialPerm([1, 3, 4, 5, 8], [8, 3, 9, 4, 5]),

> PartialPerm([1, 2, 3, 4, 8], [10, 4, 1, 9, 6]),

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10], [4, 1, 6, 7, 5, 3, 2, 10]),

> PartialPerm([1, 2, 3, 4, 6, 8, 10], [4, 9, 10, 3, 1, 5, 2]));;

gap> StructureDescriptionMaximalSubgroups(S);

["1", "C2", "C3", "C4"]

4.4.13 MultiplicativeNeutralElement (for an H-class)

. MultiplicativeNeutralElement(H) (method)

Returns: A semigroup element or fail.

Semigroups 55

If the H -class H of a semigroup S is a subgroup of S, then MultiplicativeNeutralElement

returns the identity of H . If H is not a subgroup of S, then fail is returned.

Example
gap> S := Semigroup(

> PartialPerm([1, 2, 3], [1, 5, 2]),

> PartialPerm([1, 3], [2, 4]),

> PartialPerm([1, 2, 3], [4, 1, 5]),

> PartialPerm([1, 3, 5], [1, 3, 4]),

> PartialPerm([1, 2, 4, 5], [1, 2, 3, 5]),

> PartialPerm([1, 2, 3, 5], [1, 3, 2, 5]),

> PartialPerm([1, 4, 5], [5, 4, 3]));;

gap> H := HClass(S, PartialPerm([1, 2], [1, 2]));;

gap> MultiplicativeNeutralElement(H);

<identity partial perm on [1, 2]>

gap> H := HClass(S, PartialPerm([1, 2], [1, 4]));;

gap> MultiplicativeNeutralElement(H);

fail

4.4.14 IsGreensClassNC

. IsGreensClassNC(class) (property)

Returns: true or false.

A Green's class class of a semigroup S satis�es IsGreensClassNC if it was not known to GAP

that the representative of class was an element of S at the point that class was created.

4.4.15 IsTransformationSemigroupGreensClass

. IsTransformationSemigroupGreensClass(class) (property)

Returns: true or false.

A Green's class class of a semigroup S satis�es the property

IsTransformationSemigroupGreensClass if and only if S is a semigroup of transformations.

4.4.16 IsBipartitionSemigroupGreensClass

. IsBipartitionSemigroupGreensClass(class) (property)

Returns: true or false.

A Green's class class of a semigroup S satis�es the property

IsBipartitionSemigroupGreensClass if and only if S is a semigroup of bipartitions.

4.4.17 IsPartialPermSemigroupGreensClass

. IsPartialPermSemigroupGreensClass(class) (property)

Returns: true or false.

A Green's class class of a semigroup S satis�es the property

IsPartialPermSemigroupGreensClass if and only if S is a semigroup of partial perms.

Semigroups 56

4.4.18 IsMatrixSemigroupGreensClass

. IsMatrixSemigroupGreensClass(class) (property)

Returns: true or false.

A Green's class class of a semigroup S satis�es the property IsMatrixSemigroupGreensClass

if and only if S is belongs to the category IsMatrixSemigroup.

4.4.19 StructureDescription (for an H-class)

. StructureDescription(class) (attribute)

Returns: A string or fail.

StructureDescription returns the value of StructureDescription (Reference: Structure-

Description) when it is applied to a group isomorphic to the groupH -class class . If class is not

a groupH -class, then fail is returned.
Example

gap> S := Semigroup(

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 9], [1, 9, 4, 3, 5, 2, 10, 7]),

> PartialPerm([1, 2, 4, 7, 8, 9], [6, 2, 4, 9, 1, 3]));;

gap> H := HClass(S,

> PartialPerm([1, 2, 3, 4, 7, 9], [1, 7, 3, 4, 9, 2]));;

gap> StructureDescription(H);

"C6"

4.4.20 IsGreensDLeq

. IsGreensDLeq(S) (attribute)

Returns: A function.

IsGreensDLeq(S) returns a function func such that for any two elements x and y of S , func(x,

y) return true if theD-class of x in S is greater than or equal to theD-class of y in S under the usual

ordering of Green's D-classes of a semigroup.
Example

gap> S := Semigroup([Transformation([1, 3, 4, 1, 3]),

> Transformation([2, 4, 1, 5, 5]),

> Transformation([2, 5, 3, 5, 3]),

> Transformation([5, 5, 1, 1, 3])]);;

gap> reps := ShallowCopy(DClassReps(S));

[Transformation([1, 3, 4, 1, 3]),

Transformation([2, 4, 1, 5, 5]),

Transformation([1, 4, 1, 1, 4]),

Transformation([1, 1, 1, 1, 1])]

gap> Sort(reps, IsGreensDLeq(S));

gap> reps;

[Transformation([2, 4, 1, 5, 5]),

Transformation([1, 3, 4, 1, 3]),

Transformation([1, 4, 1, 1, 4]),

Transformation([1, 1, 1, 1, 1])]

gap> IsGreensLessThanOrEqual(DClass(S, reps[2]), DClass(S, reps[1]));

true

gap> S := DualSymmetricInverseMonoid(4);;

gap> IsGreensDLeq(S)(S.1, S.3);

true

Semigroups 57

gap> IsGreensDLeq(S)(S.3, S.1);

false

gap> IsGreensLessThanOrEqual(DClass(S, S.3), DClass(S, S.1));

true

gap> IsGreensLessThanOrEqual(DClass(S, S.1), DClass(S, S.3));

false

4.5 Further attributes of semigroups

In this section we describe the attributes of a semigroup that can be found using the Semigroups

package.

4.5.1 Generators

. Generators(S) (attribute)

Returns: A list of generators.

Generators returns a generating set that can be used to de�ne the semigroup S . The generators

of a monoid or inverse semigroup S , say, can be de�ned in several ways, for example, including or

excluding the identity element, including or not the inverses of the generators. Generators uses

the de�nition that returns the least number of generators. If no generating set for S is known, then

GeneratorsOfSemigroup is used by default.

for a group

Generators(S) is a synonym for GeneratorsOfGroup (Reference: GeneratorsOfGroup).

for an ideal of semigroup

Generators(S) is a synonym for GeneratorsOfSemigroupIdeal (3.2.1).

for a semigroup

Generators(S) is a synonym for GeneratorsOfSemigroup (Reference: GeneratorsOf-

Semigroup).

for a monoid

Generators(S) is a synonym for GeneratorsOfMonoid (Reference: GeneratorsOf-

Monoid).

for an inverse semigroup

Generators(S) is a synonym for GeneratorsOfInverseSemigroup (Reference: Genera-

torsOfInverseSemigroup).

for an inverse monoid

Generators(S) is a synonym for GeneratorsOfInverseMonoid (Reference: Generator-

sOfInverseMonoid).

Example
gap> M:=Monoid(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;

gap> GeneratorsOfSemigroup(M);

[IdentityTransformation,

Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

Semigroups 58

Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]

gap> GeneratorsOfMonoid(M);

[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]

gap> Generators(M);

[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]

gap> S:=Semigroup(Generators(M));;

gap> Generators(S);

[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]

gap> GeneratorsOfSemigroup(S);

[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]

4.5.2 GroupOfUnits

. GroupOfUnits(S) (attribute)

Returns: The group of units of a semigroup.

GroupOfUnits returns the group of units of the semigroup S as a subsemigroup of S if it exists

and returns fail if it does not. Use IsomorphismPermGroup (2.4.2) if you require a permutation

representation of the group of units.

If a semigroup S has an identity e, then the group of units of S is the set of those s in S such that

there exists t in S where s*t=t*s=e. Equivalently, the group of units is theH -class of the identity

of S .

See also GreensHClassOfElement (Reference: GreensHClassOfElement),

IsMonoidAsSemigroup (4.6.11), and MultiplicativeNeutralElement (Reference: Multi-

plicativeNeutralElement).
Example

gap> S := Semigroup(Transformation([1, 2, 5, 4, 3, 8, 7, 6]),

> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),

> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),

> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),

> Transformation([5, 2, 3, 6, 3, 4, 7, 4]));;

gap> Size(S);

5304

gap> StructureDescription(GroupOfUnits(S));

"C2 x S4"

gap> S := InverseSemigroup(PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

> [2, 4, 5, 3, 6, 7, 10, 9, 8, 1]),

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 10],

> [8, 2, 3, 1, 4, 5, 10, 6, 9]));;

gap> StructureDescription(GroupOfUnits(S));

"C8"

gap> S := InverseSemigroup(PartialPerm([1, 3, 4], [4, 3, 5]),

> PartialPerm([1, 2, 3, 5], [3, 1, 5, 2]));;

gap> GroupOfUnits(S);

fail

gap> S := Semigroup(Bipartition([[1, 2, 3, -1, -3], [-2]]),

> Bipartition([[1, -1], [2, 3, -2, -3]]),

> Bipartition([[1, -2], [2, -3], [3, -1]]),

Semigroups 59

> Bipartition([[1], [2, 3, -2], [-1, -3]]));;

gap> StructureDescription(GroupOfUnits(S));

"C3"

4.5.3 Idempotents

. Idempotents(obj[, n]) (attribute)

Returns: A list of idempotents.

The argument obj should be a semigroup, D-class,H -class,L -class, orR-class.

If the optional second argument n is present and obj is a semigroup, then a list of the idempotents

in obj of rank n is returned. If you are only interested in the idempotents of a given rank, then the

second version of the function will probably be faster. However, if the optional second argument is

present, then nothing is stored in obj and so every time the function is called the computation must

be repeated.

This functions produce essentially the same output as the GAP library function with the same

name; see Idempotents (Reference: Idempotents). The main difference is that this function can be

applied to a wider class of objects as described above.

See also IsRegularDClass (Reference: IsRegularDClass), IsRegularClass (4.4.4)

IsGroupHClass (Reference: IsGroupHClass), NrIdempotents (4.5.4), and GroupHClass (4.2.4).
Example

gap> S := Semigroup([Transformation([2, 3, 4, 1]),

> Transformation([3, 3, 1, 1])]);;

gap> Idempotents(S, 1);

[]

gap> Idempotents(S, 2);

[Transformation([1, 1, 3, 3]), Transformation([1, 3, 3, 1]),

Transformation([2, 2, 4, 4]), Transformation([4, 2, 2, 4])]

gap> Idempotents(S);

[IdentityTransformation, Transformation([1, 1, 3, 3]),

Transformation([1, 3, 3, 1]), Transformation([2, 2, 4, 4]),

Transformation([4, 2, 2, 4])]

gap> x := Transformation([2, 2, 4, 4]);;

gap> R := GreensRClassOfElement(S, x);

<Green's R-class: Transformation([3, 3, 1, 1])>

gap> Idempotents(R);

[Transformation([1, 1, 3, 3]), Transformation([2, 2, 4, 4])]

gap> x := Transformation([4, 2, 2, 4]);;

gap> L := GreensLClassOfElement(S, x);;

gap> Idempotents(L);

[Transformation([2, 2, 4, 4]), Transformation([4, 2, 2, 4])]

gap> D := DClassOfLClass(L);

<Green's D-class: Transformation([1, 1, 3, 3])>

gap> Idempotents(D);

[Transformation([1, 1, 3, 3]), Transformation([2, 2, 4, 4]),

Transformation([1, 3, 3, 1]), Transformation([4, 2, 2, 4])]

gap> L := GreensLClassOfElement(S, Transformation([3, 1, 1, 3]));;

gap> Idempotents(L);

[Transformation([1, 1, 3, 3]), Transformation([1, 3, 3, 1])]

gap> H := GroupHClass(D);

<Green's H-class: Transformation([1, 1, 3, 3])>

gap> Idempotents(H);

Semigroups 60

[Transformation([1, 1, 3, 3])]

gap> S := InverseSemigroup(

> [PartialPerm([1, 2, 3, 4, 5, 7], [10, 6, 3, 4, 9, 1]),

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8],

> [6, 10, 7, 4, 8, 2, 9, 1])]);;

gap> Idempotents(S, 1);

[<identity partial perm on [4]>]

gap> Idempotents(S, 0);

[]

4.5.4 NrIdempotents

. NrIdempotents(obj) (attribute)

Returns: A positive integer.

This function returns the number of idempotents in obj where obj can be a semigroup, D-,

L -, H -, or R-class. If the actual idempotents are not required, then it is more ef�cient to use

NrIdempotents(obj) than Length(Idempotents(obj)) since the idempotents themselves are not

created when NrIdempotents is called.

See also Idempotents (Reference: Idempotents) and Idempotents (4.5.3), IsRegularDClass

(Reference: IsRegularDClass), IsRegularClass (4.4.4) IsGroupHClass (Reference: IsGroupH-

Class), and GroupHClass (4.2.4).

Example
gap> S := Semigroup([Transformation([2, 3, 4, 1]),

> Transformation([3, 3, 1, 1])]);;

gap> NrIdempotents(S);

5

gap> f := Transformation([2, 2, 4, 4]);;

gap> R := GreensRClassOfElement(S, f);;

gap> NrIdempotents(R);

2

gap> f := Transformation([4, 2, 2, 4]);;

gap> L := GreensLClassOfElement(S, f);;

gap> NrIdempotents(L);

2

gap> D := DClassOfLClass(L);;

gap> NrIdempotents(D);

4

gap> L := GreensLClassOfElement(S, Transformation([3, 1, 1, 3]));;

gap> NrIdempotents(L);

2

gap> H := GroupHClass(D);;

gap> NrIdempotents(H);

1

gap> S := InverseSemigroup(

> [PartialPerm([1, 2, 3, 5, 7, 9, 10], [6, 7, 2, 9, 1, 5, 3]),

> PartialPerm([1, 2, 3, 5, 6, 7, 9, 10],

> [8, 1, 9, 4, 10, 5, 6, 7])]);;

gap> NrIdempotents(S);

236

gap> f := PartialPerm([2, 3, 7, 9, 10], [7, 2, 1, 5, 3]);;

gap> d := DClassNC(S, f);;

Semigroups 61

gap> NrIdempotents(d);

13

4.5.5 IdempotentGeneratedSubsemigroup

. IdempotentGeneratedSubsemigroup(S) (attribute)

Returns: A semigroup.

IdempotentGeneratedSubsemigroup returns the subsemigroup of the semigroup S generated

by the idempotents of S .

See also Idempotents (4.5.3) and SmallGeneratingSet (4.5.14).

Example
gap> S := Semigroup(Transformation([1, 1]),

> Transformation([2, 1]),

> Transformation([1, 2, 2]),

> Transformation([1, 2, 3, 4, 5, 1]),

> Transformation([1, 2, 3, 4, 5, 5]),

> Transformation([1, 2, 3, 4, 6, 5]),

> Transformation([1, 2, 3, 5, 4]),

> Transformation([1, 2, 3, 7, 4, 5, 7]),

> Transformation([1, 2, 4, 8, 8, 3, 8, 7]),

> Transformation([1, 2, 8, 4, 5, 6, 7, 8]),

> Transformation([7, 7, 7, 4, 5, 6, 1]));;

gap> IdempotentGeneratedSubsemigroup(S) =

> Monoid(Transformation([1, 1]),

> Transformation([1, 2, 1]),

> Transformation([1, 2, 2]),

> Transformation([1, 2, 3, 1]),

> Transformation([1, 2, 3, 2]),

> Transformation([1, 2, 3, 4, 1]),

> Transformation([1, 2, 3, 4, 2]),

> Transformation([1, 2, 3, 4, 4]),

> Transformation([1, 2, 3, 4, 5, 1]),

> Transformation([1, 2, 3, 4, 5, 2]),

> Transformation([1, 2, 3, 4, 5, 5]),

> Transformation([1, 2, 3, 4, 5, 7, 7]),

> Transformation([1, 2, 3, 4, 7, 6, 7]),

> Transformation([1, 2, 3, 6, 5, 6]),

> Transformation([1, 2, 3, 7, 5, 6, 7]),

> Transformation([1, 2, 8, 4, 5, 6, 7, 8]),

> Transformation([2, 2]));

true

gap> S := SymmetricInverseSemigroup(5);

<symmetric inverse monoid of degree 5>

gap> IdempotentGeneratedSubsemigroup(S);

<inverse partial perm monoid of rank 5 with 5 generators>

gap> S := DualSymmetricInverseSemigroup(5);

<inverse bipartition monoid of degree 5 with 3 generators>

gap> IdempotentGeneratedSubsemigroup(S);

<inverse bipartition monoid of degree 5 with 10 generators>

gap> IsSemilattice(last);

true

Semigroups 62

4.5.6 IrredundantGeneratingSubset

. IrredundantGeneratingSubset(coll) (operation)

Returns: A list of irredundant generators.

If coll is a collection of elements of a semigroup, then this function returns a subset U of coll

such that no element of U is generated by the other elements of U.

Example
gap> S := Semigroup(Transformation([5, 1, 4, 6, 2, 3]),

> Transformation([1, 2, 3, 4, 5, 6]),

> Transformation([4, 6, 3, 4, 2, 5]),

> Transformation([5, 4, 6, 3, 1, 3]),

> Transformation([2, 2, 6, 5, 4, 3]),

> Transformation([3, 5, 5, 1, 2, 4]),

> Transformation([6, 5, 1, 3, 3, 4]),

> Transformation([1, 3, 4, 3, 2, 1]));;

gap> IrredundantGeneratingSubset(S);

[Transformation([1, 3, 4, 3, 2, 1]),

Transformation([2, 2, 6, 5, 4, 3]),

Transformation([3, 5, 5, 1, 2, 4]),

Transformation([5, 1, 4, 6, 2, 3]),

Transformation([5, 4, 6, 3, 1, 3]),

Transformation([6, 5, 1, 3, 3, 4])]

gap> S := RandomInverseMonoid(1000,10);

<inverse partial perm monoid of degree 10 with 1000 generators>

gap> SmallGeneratingSet(S);

[[1 .. 10] -> [6, 5, 1, 9, 8, 3, 10, 4, 7, 2],

[1 .. 10] -> [1, 4, 6, 2, 8, 5, 7, 10, 3, 9],

[1, 2, 3, 4, 6, 7, 8, 9] -> [7, 5, 10, 1, 8, 4, 9, 6]

[1 .. 9] -> [4, 3, 5, 7, 10, 9, 1, 6, 8]]

gap> IrredundantGeneratingSubset(last);

[[1 .. 9] -> [4, 3, 5, 7, 10, 9, 1, 6, 8],

[1 .. 10] -> [1, 4, 6, 2, 8, 5, 7, 10, 3, 9],

[1 .. 10] -> [6, 5, 1, 9, 8, 3, 10, 4, 7, 2]]

gap> S := RandomBipartitionSemigroup(1000,4);

<bipartition semigroup of degree 4 with 749 generators>

gap> SmallGeneratingSet(S);

[<bipartition: [1, -3], [2, -2], [3, -1], [4, -4]>,

<bipartition: [1, 3, -2], [2, -1, -3], [4, -4]>,

<bipartition: [1, -4], [2, 4, -1, -3], [3, -2]>,

<bipartition: [1, -1, -3], [2, -4], [3, 4, -2]>,

<bipartition: [1, -2, -4], [2], [3, -3], [4, -1]>,

<bipartition: [1, -2], [2, -1, -3], [3, 4, -4]>,

<bipartition: [1, 3, -1], [2, -3], [4, -2, -4]>,

<bipartition: [1, -1], [2, 4, -4], [3, -2, -3]>,

<bipartition: [1, 3, -1], [2, -2], [4, -3, -4]>,

<bipartition: [1, 2, -2], [3, -1, -4], [4, -3]>,

<bipartition: [1, -2, -3], [2, -4], [3], [4, -1]>,

<bipartition: [1, -1], [2, 4, -3], [3, -2], [-4]>,

<bipartition: [1, -3], [2, -1], [3, 4, -4], [-2]>,

<bipartition: [1, 2, -4], [3, -1], [4, -2], [-3]>,

<bipartition: [1, -3], [2, -4], [3, -1, -2], [4]>]

gap> IrredundantGeneratingSubset(last);

[<bipartition: [1, 2, -4], [3, -1], [4, -2], [-3]>,

Semigroups 63

<bipartition: [1, 3, -1], [2, -2], [4, -3, -4]>,

<bipartition: [1, 3, -2], [2, -1, -3], [4, -4]>,

<bipartition: [1, -1], [2, 4, -3], [3, -2], [-4]>,

<bipartition: [1, -3], [2, -1], [3, 4, -4], [-2]>,

<bipartition: [1, -3], [2, -2], [3, -1], [4, -4]>,

<bipartition: [1, -3], [2, -4], [3, -1, -2], [4]>,

<bipartition: [1, -2, -3], [2, -4], [3], [4, -1]>,

<bipartition: [1, -2, -4], [2], [3, -3], [4, -1]>]

4.5.7 MaximalSubsemigroups (for an acting semigroup)

. MaximalSubsemigroups(S) (attribute)

Returns: The maximal subsemigroups of S .

If S is a semigroup, then MaximalSubsemigroups returns a list of the maximal subsemigroups

of S .

Amaximal subsemigroup of S is a proper subsemigroup of S which is contained in no other proper

subsemigroups of S .

The method for this function are based on [GGR68].

PLEASE NOTE: the Grape package version 4.5 or higher must be available and compiled for this

function to work.
Example

gap> S := FullTransformationSemigroup(4);

<full transformation monoid of degree 4>

gap> MaximalSubsemigroups(S);

[<transformation semigroup of degree 4 with 3 generators>,

<transformation semigroup of degree 4 with 4 generators>,

<transformation semigroup of degree 4 with 4 generators>,

<transformation semigroup of degree 4 with 4 generators>,

<transformation semigroup of degree 4 with 5 generators>,

<transformation semigroup of degree 4 with 4 generators>,

<transformation semigroup of degree 4 with 5 generators>,

<transformation semigroup of degree 4 with 5 generators>,

<transformation semigroup of degree 4 with 4 generators>]

gap> D := DClass(S, Transformation([2, 2]));

<Green's D-class: Transformation([2, 3, 1, 2])>

gap> R := PrincipalFactor(D);

<Rees 0-matrix semigroup 6x4 over Group([(1,2,3), (1,2)])>

gap> MaximalSubsemigroups(R);

[<Rees 0-matrix semigroup 6x3 over Group([(1,2,3), (1,2)])>,

<Rees 0-matrix semigroup 6x3 over Group([(1,2,3), (1,2)])>,

<Rees 0-matrix semigroup 6x3 over Group([(1,2,3), (1,2)])>,

<Rees 0-matrix semigroup 6x3 over Group([(1,2,3), (1,2)])>,

<Rees 0-matrix semigroup 5x4 over Group([(1,2,3), (1,2)])>,

<Rees 0-matrix semigroup 5x4 over Group([(1,2,3), (1,2)])>,

<Rees 0-matrix semigroup 5x4 over Group([(1,2,3), (1,2)])>,

<Rees 0-matrix semigroup 5x4 over Group([(1,2,3), (1,2)])>,

<Rees 0-matrix semigroup 5x4 over Group([(1,2,3), (1,2)])>,

<Rees 0-matrix semigroup 5x4 over Group([(1,2,3), (1,2)])>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 23 generators>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 23 generators>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 21 generators>,

http://www.maths.qmul.ac.uk/~leonard/grape/

Semigroups 64

<subsemigroup of 6x4 Rees 0-matrix semigroup with 23 generators>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 21 generators>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 21 generators>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 23 generators>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 21 generators>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 21 generators>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 21 generators>]

4.5.8 MaximalSubsemigroups (for a Rees (0-)matrix semigroup, and a group)

. MaximalSubsemigroups(R, H) (operation)

Returns: The maximal subsemigroups of a Rees (0)-matrix semigroup corresponding to a maxi-

mal subgroup of the underlying group.

Suppose that R is a regular Rees (0-)matrix semigroup of the form M [G; I;J;P] where G is a

group and P is a jJj by jIj matrix with entries in G[f0g . If H is a maximal subgroup of G, then this

function returns the maximal subsemigroups of R which are isomorphic toM [H; I;J;P].
The method used in this function is based on Remark 1 of [GGR68].

PLEASE NOTE: the Grape package version 4.5 or higher must be available and compiled for this

function to work, when the argument R is a Rees 0-matrix semigroup.
Example

gap> R := ReesZeroMatrixSemigroup(Group([(1,2), (3,4)]),

> [[(), (1,2)], [(), (1,2)]]);

<Rees 0-matrix semigroup 2x2 over Group([(1,2), (3,4)])>

gap> G := UnderlyingSemigroup(R);

Group([(1,2), (3,4)])

gap> H := Group((1,2));

Group([(1,2)])

gap> max := MaximalSubsemigroups(R, H);

[<subsemigroup of 2x2 Rees 0-matrix semigroup with 6 generators>]

gap> IsMaximalSubsemigroup(R, max[1]);

true

4.5.9 IsMaximalSubsemigroup

. IsMaximalSubsemigroup(S, T) (operation)

Returns: true or false

If S and T are semigroups, then IsMaximalSubsemigroup returns true if and only if T is a

maximal subsemigroup of S .

A proper subsemigroup T of a semigroup S is a maximal if T is not contained in any other proper

subsemigroups of S .
Example

gap> S := FullTransformationSemigroup(4);

<full transformation monoid of degree 4>

gap> T := Semigroup([Transformation([3, 4, 1, 2]),

> Transformation([1, 4, 2, 3]),

> Transformation([2, 1, 1, 3])]);

<transformation semigroup of degree 4 with 3 generators>

gap> IsMaximalSubsemigroup(S, T);

true

gap> R := Semigroup([Transformation([3, 4, 1, 2]),

http://www.maths.qmul.ac.uk/~leonard/grape/

Semigroups 65

> Transformation([1, 4, 2, 2]),

> Transformation([2, 1, 1, 3])]);

<transformation semigroup of degree 4 with 3 generators>

gap> IsMaximalSubsemigroup(S, R);

false

4.5.10 MinimalIdeal

. MinimalIdeal(S) (attribute)

Returns: The minimal ideal of a semigroup.

The minimal ideal of a semigroup is the least ideal with respect to containment.

It is signi�cantly easier to �nd the minimal D-class of a semigroup, than to �nd its D-classes.

See also RepresentativeOfMinimalIdeal (4.5.11), PartialOrderOfDClasses (4.4.7),

IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual), and MinimalDClass

(4.4.9).
Example

gap> S := Semigroup(Transformation([3, 4, 1, 3, 6, 3, 4, 6, 10, 1]),

> Transformation([8, 2, 3, 8, 4, 1, 3, 4, 9, 7]));;

gap> MinimalIdeal(S);

<simple transformation semigroup ideal of degree 10 with 1 generator>

gap> Elements(MinimalIdeal(S));

[Transformation([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),

Transformation([3, 3, 3, 3, 3, 3, 3, 3, 3, 3]),

Transformation([4, 4, 4, 4, 4, 4, 4, 4, 4, 4]),

Transformation([6, 6, 6, 6, 6, 6, 6, 6, 6, 6]),

Transformation([8, 8, 8, 8, 8, 8, 8, 8, 8, 8])]

gap> x := Transformation([8, 8, 8, 8, 8, 8, 8, 8, 8, 8]);;

gap> D := DClass(S, x);

<Green's D-class: Transformation([3, 3, 3, 3, 3, 3, 3, 3, 3, 3])>

gap> ForAll(GreensDClasses(S), x-> IsGreensLessThanOrEqual(D, x));

true

gap> MinimalIdeal(POI(10));

<partial perm group of rank 10>

gap> MinimalIdeal(BrauerMonoid(6));

<simple bipartition semigroup ideal of degree 6 with 1 generator>

4.5.11 RepresentativeOfMinimalIdeal

. RepresentativeOfMinimalIdeal(S) (attribute)

. RepresentativeOfMinimalDClass(S) (attribute)

Returns: An element of the minimal ideal of a semigroup.

The minimal ideal of a semigroup is the least ideal with respect to containment.

This method returns a representative element of the minimal ideal of S without having to create the

minimal ideal itself. In general, beyond being a member of the minimal ideal, the returned element

is not guaranteed to have any special properties. However, the element will coincide with the zero

element of S if one exists.

This method works particularly well if S is a semigroup of transformations or partial permutations.

See also MinimalIdeal (4.5.10) and MinimalDClass (4.4.9).

Semigroups 66

Example
gap> S := SymmetricInverseSemigroup(10);;

gap> RepresentativeOfMinimalIdeal(S);

<empty partial perm>

gap> B := Semigroup([

> Bipartition([[1, 2], [3, 6, -2], [4, 5, -3, -4],

> [-1, -6], [-5]]),

> Bipartition([[1, -1], [2], [3], [4, -3],

> [5, 6, -5, -6], [-2, -4]])]);;

gap> RepresentativeOfMinimalIdeal(B);

<bipartition: [1, 2], [3, 6], [4, 5], [-1, -5, -6],

[-2, -4], [-3]>

gap> S := Semigroup([Transformation([5, 1, 6, 2, 2, 4]),

> Transformation([3, 5, 5, 1, 6, 2])]);;

gap> RepresentativeOfMinimalDClass(S);

Transformation([1, 2, 2, 5, 5, 1])

gap> MinimalDClass(S);

<Green's D-class: Transformation([1, 2, 2, 5, 5, 1])>

4.5.12 MultiplicativeZero

. MultiplicativeZero(S) (attribute)

Returns: The zero element of a semigroup.

MultiplicativeZero returns the zero element of the semigroup S if it exists and fail if it does

not. See also MultiplicativeZero (Reference: MultiplicativeZero).

Example
gap> S := Semigroup(Transformation([1, 4, 2, 6, 6, 5, 2]),

> Transformation([1, 6, 3, 6, 2, 1, 6]));;

gap> MultiplicativeZero(S);

Transformation([1, 1, 1, 1, 1, 1, 1])

gap> S := Semigroup(Transformation([2, 8, 3, 7, 1, 5, 2, 6]),

> Transformation([3, 5, 7, 2, 5, 6, 3, 8]),

> Transformation([6, 7, 4, 1, 4, 1, 6, 2]),

> Transformation([8, 8, 5, 1, 7, 5, 2, 8]));;

gap> MultiplicativeZero(S);

fail

gap> S := InverseSemigroup(PartialPerm([1, 3, 4], [5, 3, 1]),

> PartialPerm([1, 2, 3, 4], [4, 3, 1, 2]),

> PartialPerm([1, 3, 4, 5], [2, 4, 5, 3]));;

gap> MultiplicativeZero(S);

<empty partial perm>

gap> S := PartitionMonoid(6);

<regular bipartition monoid of degree 6 with 4 generators>

gap> MultiplicativeZero(S);

fail

gap> S := DualSymmetricInverseMonoid(6);

<inverse bipartition monoid of degree 6 with 3 generators>

gap> MultiplicativeZero(S);

<block bijection: [1, 2, 3, 4, 5, 6, -1, -2, -3, -4, -5, -6]>

Semigroups 67

4.5.13 Random (for a semigroup)

. Random(S) (method)

Returns: A random element.

This function returns a random element of the semigroup S . If the elements of S have been

calculated, then one of these is chosen randomly. Otherwise, if the data structure for S is known, then

a random element of a randomly chosen R-class is returned. If the data structure for S has not been

calculated, then a short product (at most 2*Length(GeneratorsOfSemigroup(S))) of generators

is returned.

4.5.14 SmallGeneratingSet

. SmallGeneratingSet(coll) (attribute)

. SmallSemigroupGeneratingSet(coll) (attribute)

. SmallMonoidGeneratingSet(coll) (attribute)

. SmallInverseSemigroupGeneratingSet(coll) (attribute)

. SmallInverseMonoidGeneratingSet(coll) (attribute)

Returns: A small generating set for a semigroup.

The attributes SmallXGeneratingSet return a relatively small generating subset of the collection

of elements coll , which can also be a semigroup. The returned value of SmallXGeneratingSet,

where applicable, has the property that
Example

X(SmallXGeneratingSet(coll))=X(coll);

where X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid),

InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: Inverse-

Monoid).

If the number of generators for S is already relatively small, then these functions will often return

the original generating set. These functions may return different results in different GAP sessions.

SmallGeneratingSet returns the smallest of the returned values of SmallXGeneratingSet

which is applicable to coll ; see Generators (4.5.1).

As neither irredundancy, nor minimal length are proven, these functions usually return an answer

much more quickly than IrredundantGeneratingSubset (4.5.6). These functions can be used

whenever a small generating set is desired which does not necessarily needs to be minimal.
Example

gap> S := Semigroup(Transformation([1, 2, 3, 2, 4]),

> Transformation([1, 5, 4, 3, 2]),

> Transformation([2, 1, 4, 2, 2]),

> Transformation([2, 4, 4, 2, 1]),

> Transformation([3, 1, 4, 3, 2]),

> Transformation([3, 2, 3, 4, 1]),

> Transformation([4, 4, 3, 3, 5]),

> Transformation([5, 1, 5, 5, 3]),

> Transformation([5, 4, 3, 5, 2]),

> Transformation([5, 5, 4, 5, 5]));;

gap> SmallGeneratingSet(S);

[Transformation([1, 5, 4, 3, 2]), Transformation([3, 2, 3, 4, 1]),

Transformation([5, 4, 3, 5, 2]), Transformation([1, 2, 3, 2, 4]),

Transformation([4, 4, 3, 3, 5])]

Semigroups 68

gap> S := RandomInverseMonoid(10000,10);;

gap> SmallGeneratingSet(S);

[[1 .. 10] -> [3, 2, 4, 5, 6, 1, 7, 10, 9, 8],

[1 .. 10] -> [5, 10, 8, 9, 3, 2, 4, 7, 6, 1],

[1, 3, 4, 5, 6, 7, 8, 9, 10] -> [1, 6, 4, 8, 2, 10, 7, 3, 9]]

gap> M := MathieuGroup(24);;

gap> mat := List([1..1000], x-> Random(G));;

gap> Append(mat, [1..1000]*0);

gap> mat := List([1..138], x-> List([1..57], x-> Random(mat)));;

gap> R := ReesZeroMatrixSemigroup(G, mat);;

gap> U := Semigroup(List([1..200], x-> Random(R)));

<subsemigroup of 57x138 Rees 0-matrix semigroup with 100 generators>

gap> Length(SmallGeneratingSet(U));

84

gap> S := RandomBipartitionSemigroup(100,4);

<bipartition semigroup of degree 4 with 96 generators>

gap> Length(SmallGeneratingSet(S));

13

4.5.15 ComponentRepsOfTransformationSemigroup

. ComponentRepsOfTransformationSemigroup(S) (attribute)

Returns: The representatives of components of a transformation semigroup.

This function returns the representatives of the components of the action of the transformation

semigroup S on the set of positive integers not greater than the degree of S .

The representatives are the least set of points such that every point can be reached from some

representative under the action of S .
Example

gap> S:=Semigroup(

> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),

> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;

gap> ComponentRepsOfTransformationSemigroup(S);

[2, 3, 8]

4.5.16 ComponentsOfTransformationSemigroup

. ComponentsOfTransformationSemigroup(S) (attribute)

Returns: The components of a transformation semigroup.

This function returns the components of the action of the transformation semigroup S on the set

of positive integers not greater than the degree of S ; the components of S partition this set.

Example
gap> S:=Semigroup(

> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),

> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;

gap> ComponentsOfTransformationSemigroup(S);

[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]

Semigroups 69

4.5.17 CyclesOfTransformationSemigroup

. CyclesOfTransformationSemigroup(S) (attribute)

Returns: The cycles of a transformation semigroup.

This function returns the cycles, or strongly connected components, of the action of the transfor-

mation semigroup S on the set of positive integers not greater than the degree of S .
Example

gap> S:=Semigroup(

> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),

> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;

gap> CyclesOfTransformationSemigroup(S);

[[1, 11, 12, 5, 4, 6, 10, 7, 9]]

4.5.18 IsTransitive (for a transformation semigroup and a set)

. IsTransitive(S[, X]) (operation)

. IsTransitive(S[, n]) (operation)

Returns: true or false.

A transformation semigroup S is transitive or strongly connected on the set X if for every i,j in

X there is an element s in S such that i^s=j.

If the optional second argument is a positive integer n , then IsTransitive returns true if S is

transitive on [1..n], and false if it is not.

If the optional second argument is not provided, then the degree of S is used by default; see

DegreeOfTransformationSemigroup (Reference: DegreeOfTransformationSemigroup).
Example

gap> S:=Semigroup([Bipartition([[1, 2], [3, 6, -2],

> [4, 5, -3, -4], [-1, -6], [-5]]),

> Bipartition([[1, -4], [2, 3, 4, 5], [6], [-1, -6],

> [-2, -3], [-5]])]);

<bipartition semigroup of degree 6 with 2 generators>

gap> AsTransformationSemigroup(S);

<transformation semigroup of degree 12 with 2 generators>

gap> IsTransitive(last);

false

gap> IsTransitive(AsSemigroup(Group((1,2,3))));

true

4.5.19 ComponentRepsOfPartialPermSemigroup

. ComponentRepsOfPartialPermSemigroup(S) (attribute)

Returns: The representatives of components of a partial perm semigroup.

This function returns the representatives of the components of the action of the partial perm semi-

group S on the set of positive integers where it is de�ned.

The representatives are the least set of points such that every point can be reached from some

representative under the action of S .
Example

gap> S:=Semigroup(

> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),

> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],

Semigroups 70

> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 19]));;

gap> ComponentRepsOfPartialPermSemigroup(S);

[1, 4, 6, 10, 15, 17]

4.5.20 ComponentsOfPartialPermSemigroup

. ComponentsOfPartialPermSemigroup(S) (attribute)

Returns: The components of a partial perm semigroup.

This function returns the components of the action of the partial perm semigroup S on the set of

positive integers where it is de�ned; the components of S partition this set.

Example
gap> S:=Semigroup(

> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),

> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],

> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 19]));;

gap> ComponentsOfPartialPermSemigroup(S);

[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20],

[15], [17]]

4.5.21 CyclesOfPartialPerm

. CyclesOfPartialPerm(x) (attribute)

Returns: The cycles of a partial perm.

This function returns the cycles, or strongly connected components, of the action of the partial

perm x on the set of positive integers where it is de�ned.

Example
gap> x := PartialPerm([1, 2, 3, 4, 5, 8, 10], [3, 1, 4, 2, 5, 6, 7]);

[8,6][10,7](1,3,4,2)(5)

gap> CyclesOfPartialPerm(x);

[[3, 4, 2, 1], [5]]

4.5.22 CyclesOfPartialPermSemigroup

. CyclesOfPartialPermSemigroup(S) (attribute)

Returns: The cycles of a partial perm semigroup.

This function returns the cycles, or strongly connected components, of the action of the partial

perm semigroup S on the set of positive integers where it is de�ned.

Example
gap> S:=Semigroup(

> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),

> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],

> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 19]));;

gap> CyclesOfPartialPermSemigroup(S);

[[1, 9, 12, 14, 20, 2, 19, 3, 8, 11]]

Semigroups 71

4.5.23 Normalizer (for a perm group, semigroup, record)

. Normalizer(G, S[, opts]) (operation)

. Normalizer(S[, opts]) (operation)

Returns: A permutation group.

In its �rst form, this function returns the normalizer of the transformation, partial perm, or biparti-

tion semigroup S in the permutation group G . In its second form, the normalizer of S in the symmetric

group on [1..n] where n is the degree of S is returned.

The NORMALIZER of a transformation semigroup S in a permutation group G in the subgroup H

of G consisting of those elements in g in G conjugating S to S , i.e. S^g=S .

Analogous de�nitions can be given for a partial perm and bipartition semigroups.

The method used by this operation is based on Section 3 in [ABMN10].

The optional �nal argument opts allows you to specify various options, which determine how the

normalizer is calculated. The values of these options can dramatically change the time it takes for this

operation to complete. In different situations, different options give the best performance.

The argument opts should be a record, and the available options are:

random

If this option has the value true and the genss package is loaded, then the non-deterministic

algorithms in genss are used in Normalizer. So, there is some chance that Normalizer will

return an incorrect result in this case, but these methods can also be much faster than the deter-

ministic algorithms which are used if this option is false.

If genss is not loaded, then this option is ignored.

The default value for this option is false.

lambdastab

If this option has the value true, then Normalizer initially �nds the setwise stabilizer of

the images or right blocks of the semigroup S . Sometimes this improves the performance of

Normalizer and sometimes it does not. If this option in false, then this setwise stabilizer is

not found.

The default value for this option is true.

rhostab

If this option has the value true, then Normalizer initially �nds the setwise stabilizer of the

kernels, domains, or left blocks of the semigroup S . Sometimes this improves the performance

of Normalizer and sometimes it does not. If this option is false, the this setwise stabilizer is

not found.

If S is an inverse semigroup, then this option is ignored.

The default value for this option is true.

Example
gap> S:=BrauerMonoid(8);

<regular bipartition monoid of degree 8 with 3 generators>

gap> StructureDescription(Normalizer(S));

"S8"

gap> S:=InverseSemigroup(

> PartialPerm([1, 2, 3, 4, 5], [2, 5, 6, 3, 8]),

> PartialPerm([1, 2, 4, 7, 8], [3, 6, 2, 5, 7]));;

gap> Normalizer(S, rec(random:=true, lambdastab:=false));

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html

Semigroups 72

#I Have 33389 points.

#I Have 40136 points in new orbit.

Group(())

4.5.24 SmallestElementSemigroup

. SmallestElementSemigroup(S) (attribute)

. LargestElementSemigroup(S) (attribute)

Returns: A transformation.

These attributes return the smallest and largest element of the transformation semigroup S , re-

spectively. Smallest means the �rst element in the sorted set of elements of S and largest means the

last element in the set of elements.

It is not necessary to �nd the elements of the semigroup to determine the smallest or largest

element, and this function has considerable better performance than the equivalent Elements(S)[1]

and Elements(S)[Size(S)].
Example

gap> S := Monoid(

> [Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),

> Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 7])]);

<transformation monoid of degree 11 with 2 generators>

gap> SmallestElementSemigroup(S);

IdentityTransformation

gap> LargestElementSemigroup(S);

Transformation([11, 11, 10, 10, 7, 6, 5, 6, 2, 2, 4])

4.5.25 GeneratorsSmallest (for a transformation semigroup)

. GeneratorsSmallest(S) (attribute)

Returns: A generating set of transformations.

GeneratorsSmallest returns the lexicographically least collection X of transformations such

that S is generated by X and each X[i] is not generated by X[1], X[2], ..., X[i-1].

Note that it can be dif�cult to �nd this set of generators, and that it might contain a substantial

proportion of the elements of the semigroup.

The comparison of two transformation semigroups via the lexicographic comparison of their sets

of elements is the same relation as the lexicographic comparison of their GeneratorsSmallest.

However, due to the complexity of determining the GeneratorsSmallest, this is not the method

used by the Semigroups package when comparing transformation semigroups.

Example
gap> S := Monoid(

> Transformation([1, 3, 4, 1]), Transformation([2, 4, 1, 2]),

> Transformation([3, 1, 1, 3]), Transformation([3, 3, 4, 1]));

<transformation monoid of degree 4 with 4 generators>

gap> GeneratorsSmallest(S);

[Transformation([1, 1, 1, 1]), Transformation([1, 1, 1, 2]),

Transformation([1, 1, 1, 3]), Transformation([1, 1, 1]),

Transformation([1, 1, 2, 1]), Transformation([1, 1, 2, 2]),

Transformation([1, 1, 3, 1]), Transformation([1, 1, 3, 3]),

Transformation([1, 1]), Transformation([1, 1, 4, 1]),

Transformation([1, 2, 1, 1]), Transformation([1, 2, 2, 1]),

Semigroups 73

IdentityTransformation, Transformation([1, 3, 1, 1]),

Transformation([1, 3, 4, 1]), Transformation([2, 1, 1, 2]),

Transformation([2, 2, 2]), Transformation([2, 4, 1, 2]),

Transformation([3, 3, 3]), Transformation([3, 3, 4, 1])]

4.5.26 UnderlyingSemigroupOfSemigroupWithAdjoinedZero

. UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S) (attribute)

Returns: A semigroup, or fail.

If S is a semigroup for which the property IsSemigroupWithAdjoinedZero (4.6.17) is true, (i.e.

S has a MultiplicativeZero (4.5.12) and the set S nf0g is a subsemigroup of S), then this method

returns the semigroup S nf0g.
Otherwise, if S is a semigroup for which the property IsSemigroupWithAdjoinedZero (4.6.17)

is false, then this method returns fail.
Example

gap> S := Semigroup([

> Transformation([2, 3, 4, 5, 1, 6]),

> Transformation([2, 1, 3, 4, 5, 6]),

> Transformation([6, 6, 6, 6, 6, 6])]);

<transformation semigroup of degree 6 with 3 generators>

gap> MultiplicativeZero(S);

Transformation([6, 6, 6, 6, 6, 6])

gap> G := UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);

<transformation semigroup of degree 5 with 2 generators>

gap> IsGroupAsSemigroup(G);

true

gap> IsZeroGroup(S);

true

gap> S := SymmetricInverseMonoid(6);;

gap> MultiplicativeZero(S);

<empty partial perm>

gap> G := UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);

fail

4.6 Further properties of semigroups

In this section we describe the properties of a semigroup that can be determined using theSemigroups

package.

4.6.1 IsBand

. IsBand(S) (property)

Returns: true or false.

IsBand returns true if every element of the semigroup S is an idempotent and false if it is not.

An inverse semigroup is band if and only if it is a semilattice; see IsSemilattice (4.6.18).

Example
gap> gens := [Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 1]),

> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]),

> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 3]),

Semigroups 74

> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 4]),

> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 7])];;

gap> S := Semigroup(gens);;

gap> IsBand(S);

true

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 4, 8, 9], [5, 8, 7, 6, 9, 1]),

> PartialPerm([1, 3, 4, 7, 8, 9, 10], [2, 3, 8, 7, 10, 6, 1]));;

gap> IsBand(S);

false

gap> IsBand(IdempotentGeneratedSubsemigroup(S));

true

gap> S := PartitionMonoid(4);

<regular bipartition monoid of degree 4 with 4 generators>

gap> M := MinimalIdeal(S);

<simple bipartition semigroup ideal of degree 4 with 1 generator>

gap> IsBand(M);

true

4.6.2 IsBlockGroup

. IsBlockGroup(S) (property)

. IsSemigroupWithCommutingIdempotents(S) (property)

Returns: true or false.

IsBlockGroup and IsSemigroupWithCommutingIdempotents return true if the semigroup S

is a block group and false if it is not.

A semigroup S is a block group if every L -class and every R-class of S contains at most one

idempotent. Every semigroup of partial permutations is a block group.

Example
gap> S := Semigroup(Transformation([5, 6, 7, 3, 1, 4, 2, 8]),

> Transformation([3, 6, 8, 5, 7, 4, 2, 8]));;

gap> IsBlockGroup(S);

true

gap> S := Semigroup(Transformation([2, 1, 10, 4, 5, 9, 7, 4, 8, 4]),

> Transformation([10, 7, 5, 6, 1, 3, 9, 7, 10, 2]));;

gap> IsBlockGroup(S);

false

gap> S := Semigroup(

> PartialPerm([1, 2], [5, 4]),

> PartialPerm([1, 2, 3], [1, 2, 5]),

> PartialPerm([1, 2, 3], [2, 1, 5]),

> PartialPerm([1, 3, 4], [3, 1, 2]),

> PartialPerm([1, 3, 4, 5], [5, 4, 3, 2]));;

gap> T := Range(IsomorphismBlockBijectionSemigroup(S));

<bipartition semigroup of degree 6 with 5 generators>

gap> IsBlockGroup(T);

true

gap> IsBlockGroup(Range(IsomorphismBipartitionSemigroup(S)));

true

gap> S := Semigroup(

> Bipartition([[1, -2], [2, -3], [3, -4], [4, -1]]),

Semigroups 75

> Bipartition([[1, -2], [2, -1], [3, -3], [4, -4]]),

> Bipartition([[1, 2, -3], [3, -1, -2], [4, -4]]),

> Bipartition([[1, -1], [2, -2], [3, -3], [4, -4]]));;

gap> IsBlockGroup(S);

true

4.6.3 IsCommutativeSemigroup

. IsCommutativeSemigroup(S) (property)

Returns: true or false.

IsCommutativeSemigroup returns true if the semigroup S is commutative and false if it is not.

The function IsCommutative (Reference: IsCommutative) can also be used to test if a semigroup

is commutative.

A semigroup S is commutative if x*y=y*x for all x,y in S .
Example

gap> gens := [Transformation([2, 4, 5, 3, 7, 8, 6, 9, 1]),

> Transformation([3, 5, 6, 7, 8, 1, 9, 2, 4])];;

gap> S := Semigroup(gens);;

gap> IsCommutativeSemigroup(S);

true

gap> IsCommutative(S);

true

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 4, 5, 6], [2, 5, 1, 3, 9, 6]),

> PartialPerm([1, 2, 3, 4, 6, 8], [8, 5, 7, 6, 2, 1]));;

gap> IsCommutativeSemigroup(S);

false

gap> S := Semigroup(

> Bipartition([[1, 2, 3, 6, 7, -1, -4, -6],

> [4, 5, 8, -2, -3, -5, -7, -8]]),

> Bipartition([[1, 2, -3, -4], [3, -5], [4, -6], [5, -7],

> [6, -8], [7, -1], [8, -2]]));;

gap> IsCommutativeSemigroup(S);

true

4.6.4 IsCompletelyRegularSemigroup

. IsCompletelyRegularSemigroup(S) (property)

Returns: true or false.

IsCompletelyRegularSemigroup returns true if every element of the semigroup S is contained

in a subgroup of S .

An inverse semigroup is completely regular if and only if it is a Clifford semigroup; see

IsCliffordSemigroup (4.7.1).

Example
gap> gens := [Transformation([1, 2, 4, 3, 6, 5, 4]),

> Transformation([1, 2, 5, 6, 3, 4, 5]),

> Transformation([2, 1, 2, 2, 2, 2, 2])];;

gap> S := Semigroup(gens);;

gap> IsCompletelyRegularSemigroup(S);

true

Semigroups 76

gap> IsInverseSemigroup(S);

true

gap> T := Range(IsomorphismPartialPermSemigroup(S));;

gap> IsCompletelyRegularSemigroup(T);

true

gap> IsCliffordSemigroup(T);

true

gap> S := Semigroup(

> Bipartition([[1, 3, -4], [2, 4, -1, -2], [-3]]),

> Bipartition([[1, -1], [2, 3, 4, -3], [-2, -4]]));;

gap> IsCompletelyRegularSemigroup(S);

false

4.6.5 IsCongruenceFreeSemigroup

. IsCongruenceFreeSemigroup(S) (property)

Returns: true or false.

IsCongruenceFreeSemigroup returns true if the semigroup S is a congruence-free semigroup

and false if it is not.

A semigroup S is congruence-free if it has no non-trivial proper congruences.

A semigroup with zero is congruence-free if and only if it is isomorphic to a regular Rees 0-

matrix semigroup R whose underlying semigroup is the trivial group, no two rows of the matrix of R

are identical, and no two columns are identical; see Theorem 3.7.1 in [How95].

A semigroup without zero is congruence-free if and only if it is a simple group or has order 2; see

Theorem 3.7.2 in [How95].
Example

gap> S := Semigroup(Transformation([4, 2, 3, 3, 4]));;

gap> IsCongruenceFreeSemigroup(S);

true

gap> S := Semigroup(Transformation([2, 2, 4, 4]),

> Transformation([5, 3, 4, 4, 6, 6]));;

gap> IsCongruenceFreeSemigroup(S);

false

4.6.6 IsGroupAsSemigroup

. IsGroupAsSemigroup(S) (property)

Returns: true or false.

IsGroupAsSemigroup returns true if and only if the semigroup S is mathematically a group.

Example
gap> gens := [Transformation([2, 4, 5, 3, 7, 8, 6, 9, 1]),

> Transformation([3, 5, 6, 7, 8, 1, 9, 2, 4])];;

gap> S := Semigroup(gens);;

gap> IsGroupAsSemigroup(S);

true

gap> G := SymmetricGroup(5);;

gap> S := Range(IsomorphismPartialPermSemigroup(G));

<inverse partial perm semigroup of rank 5 with 2 generators>

gap> IsGroupAsSemigroup(S);

true

Semigroups 77

gap> S := SymmetricGroup([1,2,10]);;

gap> T := Range(IsomorphismBlockBijectionSemigroup(

> Range(IsomorphismPartialPermSemigroup(S))));

<inverse bipartition semigroup of degree 11 with 2 generators>

gap> IsGroupAsSemigroup(T);

true

4.6.7 IsIdempotentGenerated

. IsIdempotentGenerated(S) (property)

. IsSemiBand(S) (property)

Returns: true or false.

IsIdempotentGenerated and IsSemiBand return true if the semigroup S is gener-

ated by its idempotents and false if it is not. See also Idempotents (4.5.3) and

IdempotentGeneratedSubsemigroup (4.5.5).

An inverse semigroup is idempotent-generated if and only if it is a semilattice; see

IsSemilattice (4.6.18).

Semiband and idempotent-generated are synonymous in this context.
Example

gap> S := SingularTransformationSemigroup(4);

<regular transformation semigroup ideal of degree 4 with 1 generator>

gap> IsIdempotentGenerated(S);

true

gap> S := SingularBrauerMonoid(5);

<regular bipartition semigroup ideal of degree 5 with 1 generator>

gap> IsIdempotentGenerated(S);

true

4.6.8 IsLeftSimple

. IsLeftSimple(S) (property)

. IsRightSimple(S) (property)

Returns: true or false.

IsLeftSimple and IsRightSimple returns true if the semigroup S has only one L -class or

oneR-class, respectively, and returns false if it has more than one.

An inverse semigroup is left simple if and only if it is right simple if and only if it is a group; see

IsGroupAsSemigroup (4.6.6).
Example

gap> S := Semigroup(Transformation([6, 7, 9, 6, 8, 9, 8, 7, 6]),

> Transformation([6, 8, 9, 6, 8, 8, 7, 9, 6]),

> Transformation([6, 8, 9, 7, 8, 8, 7, 9, 6]),

> Transformation([6, 9, 8, 6, 7, 9, 7, 8, 6]),

> Transformation([6, 9, 9, 6, 8, 8, 7, 9, 6]),

> Transformation([6, 9, 9, 7, 8, 8, 6, 9, 7]),

> Transformation([7, 8, 8, 7, 9, 9, 7, 8, 6]),

> Transformation([7, 9, 9, 7, 6, 9, 6, 8, 7]),

> Transformation([8, 7, 6, 9, 8, 6, 8, 7, 9]),

> Transformation([9, 6, 6, 7, 8, 8, 7, 6, 9]),

> Transformation([9, 6, 6, 7, 9, 6, 9, 8, 7]),

> Transformation([9, 6, 7, 9, 6, 6, 9, 7, 8]),

Semigroups 78

> Transformation([9, 6, 8, 7, 9, 6, 9, 8, 7]),

> Transformation([9, 7, 6, 8, 7, 7, 9, 6, 8]),

> Transformation([9, 7, 7, 8, 9, 6, 9, 7, 8]),

> Transformation([9, 8, 8, 9, 6, 7, 6, 8, 9]));;

gap> IsRightSimple(S);

false

gap> IsLeftSimple(S);

true

gap> IsGroupAsSemigroup(S);

false

gap> NrRClasses(S);

16

gap> S := BrauerMonoid(6);;

gap> S := Semigroup(RClass(S, Random(MinimalDClass(S))));;

gap> IsLeftSimple(S);

false

gap> IsRightSimple(S);

true

4.6.9 IsLeftZeroSemigroup

. IsLeftZeroSemigroup(S) (property)

Returns: true or false.

IsLeftZeroSemigroup returns true if the semigroup S is a left zero semigroup and false if it

is not.

A semigroup is a left zero semigroup if x*y=x for all x,y. An inverse semigroup is a left zero

semigroup if and only if it is trivial.
Example

gap> gens := [Transformation([2, 1, 4, 3, 5]),

> Transformation([3, 2, 3, 1, 1])];;

gap> S := Semigroup(gens);;

gap> IsRightZeroSemigroup(S);

false

gap> gens := [Transformation([1, 2, 3, 3, 1]),

> Transformation([1, 2, 3, 3, 3])];;

gap> S := Semigroup(gens);;

gap> IsLeftZeroSemigroup(S);

true

4.6.10 IsMonogenicSemigroup

. IsMonogenicSemigroup(S) (property)

Returns: true or false.

IsMonogenicSemigroup returns true if the semigroup S is monogenic and it returns false if it

is not.

A semigroup is monogenic if it is generated by a single element. See also

IsMonogenicInverseSemigroup (4.7.7) and IndexPeriodOfTransformation (Reference: Ind-

exPeriodOfTransformation).
Example

gap> S := Semigroup(

> Transformation([2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10]),

Semigroups 79

> Transformation([2, 2, 2, 8, 11, 15, 11, 10, 2, 10, 11, 2, 10, 4, 7]),

> Transformation([2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10]),

> Transformation([2, 2, 12, 7, 8, 14, 8, 11, 2, 11, 10, 2, 11, 15, 4]));;

gap> IsMonogenicSemigroup(S);

true

gap> S := Semigroup(

> Bipartition([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -2, -5, -7, -9],

> [-1, -10], [-3, -4, -6, -8]]),

> Bipartition([[1, 4, 7, 8, -2], [2, 3, 5, 10, -5],

> [6, 9, -7, -9], [-1, -10], [-3, -4, -6, -8]]));;

gap> IsMonogenicSemigroup(S);

true

4.6.11 IsMonoidAsSemigroup

. IsMonoidAsSemigroup(S) (property)

Returns: true or false.

IsMonoidAsSemigroup returns true if and only if the semigroup S is mathematically a monoid,

i.e. if and only if it contains a MultiplicativeNeutralElement (Reference: MultiplicativeNeu-

tralElement).

It is possible that a semigroup which satis�es IsMonoidAsSemigroup is not in the GAP cate-

gory IsMonoid (Reference: IsMonoid). This is possible if the MultiplicativeNeutralElement

(Reference: MultiplicativeNeutralElement) of S is not equal to the One (Reference: One) of any el-

ement in S . Therefore a semigroup satisfying IsMonoidAsSemigroup may not possess the attributes

of a monoid (such as, GeneratorsOfMonoid (Reference: GeneratorsOfMonoid)).

See also One (Reference: One), IsInverseMonoid (Reference: IsInverseMonoid) and

IsomorphismTransformationMonoid (Reference: IsomorphismTransformationMonoid).

Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;

gap> IsMonoidAsSemigroup(S);

true

gap> IsMonoid(S);

false

gap> MultiplicativeNeutralElement(S);

Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 9])

gap> T := Range(IsomorphismBipartitionSemigroup(S));;

gap> IsMonoidAsSemigroup(T);

true

gap> IsMonoid(T);

false

gap> One(T);

fail

gap> S := Monoid(Transformation([8, 2, 8, 9, 10, 6, 2, 8, 7, 8]),

> Transformation([9, 2, 6, 3, 6, 4, 5, 5, 3, 2]));;

gap> IsMonoidAsSemigroup(S);

true

Semigroups 80

4.6.12 IsOrthodoxSemigroup

. IsOrthodoxSemigroup(S) (property)

Returns: true or false.

IsOrthodoxSemigroup returns true if the semigroup S is orthodox and false if it is not.

A semigroup is orthodox if it is regular and its idempotent elements form a subsemigroup. Every

inverse semigroup is also an orthodox semigroup.

See also IsRegularSemigroup (4.6.14) and IsRegularSemigroup (Reference: IsRegu-

larSemigroup).
Example

gap> gens := [Transformation([1, 1, 1, 4, 5, 4]),

> Transformation([1, 2, 3, 1, 1, 2]),

> Transformation([1, 2, 3, 1, 1, 3]),

> Transformation([5, 5, 5, 5, 5, 5])];;

gap> S := Semigroup(gens);;

gap> IsOrthodoxSemigroup(S);

true

gap> S := Semigroup(GeneratorsOfSemigroup(DualSymmetricInverseMonoid(5)));;

gap> IsOrthodoxSemigroup(S);

true

4.6.13 IsRectangularBand

. IsRectangularBand(S) (property)

Returns: true or false.

IsRectangularBand returns true if the semigroup S is a rectangular band and false if it is not.

A semigroup S is a rectangular band if for all x;y;z in S we have that x2 = x and xyz= xz.

Equivalently, S is a rectangular band if S is isomorphic to a semigroup of the form I�L with

multiplication (i;l)(j;m) = (i;m). In this case, S is called an jIj� jLj rectangular band.
An inverse semigroup is a rectangular band if and only if it is a group.

Example
gap> gens := [Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 1]),

> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]),

> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 3]),

> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 4]),

> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 7])];;

gap> S := Semigroup(gens);;

gap> IsRectangularBand(S);

true

gap> IsRectangularBand(MinimalIdeal(PartitionMonoid(4)));

true

4.6.14 IsRegularSemigroup

. IsRegularSemigroup(S) (property)

Returns: true or false.

IsRegularSemigroup returns true if the semigroup S is regular and false if it is not.

A semigroup S is regular if for all x in S there exists y in S such that x*y*x=x. Every inverse

semigroup is regular, and a semigroup of partial permutations is regular if and only if it is an inverse

semigroup.

Semigroups 81

See also IsRegularDClass (Reference: IsRegularDClass), IsRegularClass (4.4.4), and

IsRegularSemigroupElement (Reference: IsRegularSemigroupElement).

Example
gap> IsRegularSemigroup(FullTransformationSemigroup(5));

true

gap> IsRegularSemigroup(JonesMonoid(5));

true

4.6.15 IsRightZeroSemigroup

. IsRightZeroSemigroup(S) (property)

Returns: true or false.

IsRightZeroSemigroup returns true if the S is a right zero semigroup and false if it is not.

A semigroup S is a right zero semigroup if x*y=y for all x,y in S. An inverse semigroup is a right

zero semigroup if and only if it is trivial.

Example
gap> gens := [Transformation([2, 1, 4, 3, 5]),

> Transformation([3, 2, 3, 1, 1])];;

gap> S := Semigroup(gens);;

gap> IsRightZeroSemigroup(S);

false

gap> gens := [Transformation([1, 2, 3, 3, 1]),

> Transformation([1, 2, 4, 4, 1])];;

gap> S := Semigroup(gens);;

gap> IsRightZeroSemigroup(S);

true

4.6.16 IsXTrivial

. IsRTrivial(S) (property)

. IsLTrivial(S) (property)

. IsHTrivial(S) (property)

. IsDTrivial(S) (property)

. IsAperiodicSemigroup(S) (property)

. IsCombinatorialSemigroup(S) (property)

Returns: true or false.

IsXTrivial returns true if Green's R-relation, L -relation, H -relation, D-relation, respec-

tively, on the semigroup S is trivial and false if it is not. These properties can also be applied to a

Green's class instead of a semigroup where applicable.

For inverse semigroups, the properties of being R-trivial, L -trivial, D-trivial, and a semilattice

are equivalent; see IsSemilattice (4.6.18).

A semigroup is aperiodic if its contains no non-trivial subgroups (equivalently, all of its group

H -classes are trivial). A �nite semigroup is aperiodic if and only if it isH -trivial.

Combinatorial is a synonym for aperiodic in this context.

Example
gap> S := Semigroup(Transformation([1, 5, 1, 3, 7, 10, 6, 2, 7, 10]),

> Transformation([4, 4, 5, 6, 7, 7, 7, 4, 3, 10]));;

gap> IsHTrivial(S);

true

Semigroups 82

gap> Size(S);

108

gap> IsRTrivial(S);

false

gap> IsLTrivial(S);

false

4.6.17 IsSemigroupWithAdjoinedZero

. IsSemigroupWithAdjoinedZero(S) (property)

Returns: true or false.

IsSemigroupWithAdjoinedZero returns true if the semigroup S can be expressed as the dis-

joint union of subsemigroups S nf0g and f0g (where 0 is the MultiplicativeZero (4.5.12) of S).

If this is not the case, then either S lacks a multiplicative zero, or the set S nf0g is not a subsemi-

group of S , and so IsSemigroupWithAdjoinedZero returns false.
Example

gap> S := Semigroup([

> Transformation([2, 3, 4, 5, 1, 6]),

> Transformation([2, 1, 3, 4, 5, 6]),

> Transformation([6, 6, 6, 6, 6, 6])]);

<transformation semigroup of degree 6 with 3 generators>

gap> IsZeroGroup(S);

true

gap> IsSemigroupWithAdjoinedZero(S);

true

gap> S := FullTransformationMonoid(4);;

gap> IsSemigroupWithAdjoinedZero(S);

false

4.6.18 IsSemilattice

. IsSemilattice(S) (property)

Returns: true or false.

IsSemilattice returns true if the semigroup S is a semilattice and false if it is not.

A semigroup is a semilattice if it is commutative and every element is an idempotent. The idem-

potents of an inverse semigroup form a semilattice.

Example
gap> S := Semigroup(Transformation([2, 5, 1, 7, 3, 7, 7]),

> Transformation([3, 6, 5, 7, 2, 1, 7]));;

gap> Size(S);

631

gap> IsInverseSemigroup(S);

true

gap> A := Semigroup(Idempotents(S));

<transformation semigroup of degree 7 with 32 generators>

gap> IsSemilattice(A);

true

gap> S := FactorisableDualSymmetricInverseSemigroup(5);;

gap> S := IdempotentGeneratedSubsemigroup(S);;

Semigroups 83

gap> IsSemilattice(S);

true

4.6.19 IsSimpleSemigroup

. IsSimpleSemigroup(S) (property)

. IsCompletelySimpleSemigroup(S) (property)

Returns: true or false.

IsSimpleSemigroup returns true if the semigroup S is simple and false if it is not.

A semigroup is simple if it has no proper 2-sided ideals. A semigroup is completely simple if it

is simple and possesses minimal left and right ideals. A �nite semigroup is simple if and only if it is

completely simple. An inverse semigroup is simple if and only if it is a group.
Example

gap> S := Semigroup(

> Transformation([2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 2]),

> Transformation([1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 3]),

> Transformation([1, 7, 3, 9, 5, 11, 7, 1, 9, 3, 11, 5, 5]),

> Transformation([7, 7, 9, 9, 11, 11, 1, 1, 3, 3, 5, 5, 7]));;

gap> IsSimpleSemigroup(S);

true

gap> IsCompletelySimpleSemigroup(S);

true

gap> IsSimpleSemigroup(MinimalIdeal(BrauerMonoid(6)));

true

gap> R := Range(IsomorphismReesMatrixSemigroup(

> MinimalIdeal(BrauerMonoid(6))));

<Rees matrix semigroup 15x15 over Group(())>

4.6.20 IsSynchronizingSemigroup

. IsSynchronizingSemigroup(S[, n]) (operation)

. IsSynchronizingTransformationCollection(coll[, n]) (operation)

Returns: true or false.

For a positive integer n , IsSynchronizingSemigroup returns true if the semigroup of trans-

formations S contains a transformation with constant value on [1..n]. Note that this function will

return true whenever n = 1. See also ConstantTransformation (Reference: ConstantTransfor-

mation).

If the optional second argument is not speci�ed, then n will be taken to be the value of

DegreeOfTransformationSemigroup (Reference: DegreeOfTransformationSemigroup) for S .

The operation IsSynchronizingTransformationCollection behaves in the same way as

IsSynchronizingSemigroup but can be applied to any collection of transformations and not only

semigroups.

Note that the semigroup consisting of the identity transformation has degree 0, and for this special

case the function IsSynchronizingSemigroup will return false.

Example
gap> S:=Semigroup(Transformation([1, 1, 8, 7, 6, 6, 4, 1, 8, 9]),

> Transformation([5, 8, 7, 6, 10, 8, 7, 6, 9, 7]));;

gap> IsSynchronizingSemigroup(S, 10);

true

Semigroups 84

gap> S:=Semigroup(Transformation([3, 8, 1, 1, 9, 9, 8, 7, 9, 6]),

> Transformation([7, 6, 8, 7, 5, 6, 8, 7, 8, 9]));;

gap> IsSynchronizingSemigroup(S, 10);

false

gap> Representative(MinimalIdeal(S));

Transformation([7, 8, 8, 7, 8, 8, 8, 7, 8, 8])

4.6.21 IsZeroGroup

. IsZeroGroup(S) (property)

Returns: true or false.

IsZeroGroup returns true if the semigroup S is a zero group and false if it is not.

A semigroup S is a zero group if there exists an element z in S such that S without z is a group

and x*z=z*x=z for all x in S. Every zero group is an inverse semigroup.

Example
gap> S := Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 5, 9]),

> Transformation([3, 3, 8, 2, 5, 6, 4, 4, 9]),

> ConstantTransformation(9, 9));;

gap> IsZeroGroup(S);

true

gap> T := Range(IsomorphismPartialPermSemigroup(S));;

gap> IsZeroGroup(T);

true

gap> IsZeroGroup(JonesMonoid(2));

true

4.6.22 IsZeroRectangularBand

. IsZeroRectangularBand(S) (property)

Returns: true or false.

IsZeroRectangularBand returns true if the semigroup S is a zero rectangular band and false

if it is not.

A semigroup is a 0-rectangular band if it is 0-simple and H -trivial; see also

IsZeroSimpleSemigroup (4.6.24) and IsHTrivial (4.6.16). An inverse semigroup is a 0-

rectangular band if and only if it is a 0-group; see IsZeroGroup (4.6.21).

Example
gap> S := Semigroup(

> Transformation([1, 3, 7, 9, 1, 12, 13, 1, 15, 9, 1, 18, 1, 1, 13,

> 1, 1, 21, 1, 1, 1, 1, 1, 25, 26, 1]),

> Transformation([1, 5, 1, 5, 11, 1, 1, 14, 1, 16, 17, 1, 1, 19, 1,

> 11, 1, 1, 1, 23, 1, 16, 19, 1, 1, 1]),

> Transformation([1, 4, 8, 1, 10, 1, 8, 1, 1, 1, 10, 1, 8, 10, 1, 1,

> 20, 1, 22, 1, 8, 1, 1, 1, 1, 1]),

> Transformation([1, 6, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 6, 1, 1,

> 6, 1, 1, 24, 1, 1, 1, 1, 6]));;

gap> IsZeroRectangularBand(Semigroup(Elements(GreensDClasses(S)[7])));

true

gap> IsZeroRectangularBand(Semigroup(Elements(GreensDClasses(S)[1])));

false

Semigroups 85

4.6.23 IsZeroSemigroup

. IsZeroSemigroup(S) (property)

Returns: true or false.

IsZeroSemigroup returns true if the semigroup S is a zero semigroup and false if it is not.

A semigroup S is a zero semigroup if there exists an element z in S such that x*y=z for all x,y in

S. An inverse semigroup is a zero semigroup if and only if it is trivial.

Example
gap> S := Semigroup(Transformation([4, 7, 6, 3, 1, 5, 3, 6, 5, 9]),

> Transformation([5, 3, 5, 1, 9, 3, 8, 7, 4, 3]));;

gap> IsZeroSemigroup(S);

false

gap> S := Semigroup(Transformation([7, 8, 8, 8, 5, 8, 8, 8]),

> Transformation([8, 8, 8, 8, 5, 7, 8, 8]),

> Transformation([8, 7, 8, 8, 5, 8, 8, 8]),

> Transformation([8, 8, 8, 7, 5, 8, 8, 8]),

> Transformation([8, 8, 7, 8, 5, 8, 8, 8]));;

gap> IsZeroSemigroup(S);

true

gap> MultiplicativeZero(S);

Transformation([8, 8, 8, 8, 5, 8, 8, 8])

4.6.24 IsZeroSimpleSemigroup

. IsZeroSimpleSemigroup(S) (property)

Returns: true or false.

IsZeroSimpleSemigroup returns true if the semigroup S is 0-simple and false if it is not.

A semigroup is a 0-simple if it has no two-sided ideals other than itself and the set containing the

zero element; see also MultiplicativeZero (4.5.12). An inverse semigroup is 0-simple if and only

if it is a Brandt semigroup; see IsBrandtSemigroup (4.7.2).

Example
gap> S := Semigroup(

> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 17, 5, 17,

> 17, 17, 17, 17, 17]),

> Transformation([1, 17, 17, 17, 11, 17, 17, 17, 17, 17, 17, 17,

> 17, 17, 17, 17, 17]),

> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 17, 4, 17,

> 17, 17, 17, 17, 17]),

> Transformation([1, 17, 17, 5, 17, 17, 17, 17, 17, 17, 17, 17,

> 17, 17, 17, 17, 17]));;

gap> IsZeroSimpleSemigroup(S);

true

gap> S := Semigroup(

> Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),

> Transformation([2, 3, 4, 5, 6, 8, 7, 1, 2, 2]));;

gap> IsZeroSimpleSemigroup(S);

false

Semigroups 86

4.7 Properties and attributes of inverse semigroups

In this section we describe properties and attributes speci�c to inverse semigroups that can be deter-

mined using Semigroups.

The functions

� IsJoinIrreducible (4.7.5)

� IsMajorantlyClosed (4.7.6)

� JoinIrreducibleDClasses (4.7.8)

� MajorantClosure (4.7.9)

� Minorants (4.7.10)

� RightCosetsOfInverseSemigroup (4.7.12)

� SmallerDegreePartialPermRepresentation (4.7.14)

� VagnerPrestonRepresentation (4.7.15)

were written by Wilf Wilson and Robert Hancock.

The function CharacterTableOfInverseSemigroup (4.7.16) was written by Jhevon Smith and

Ben Steinberg.

4.7.1 IsCliffordSemigroup

. IsCliffordSemigroup(S) (property)

Returns: true or false.

IsCliffordSemigroup returns true if the semigroup S is regular and its idempotents are central,

and false if it is not.
Example

gap> S := Semigroup(Transformation([1, 2, 4, 5, 6, 3, 7, 8]),

> Transformation([3, 3, 4, 5, 6, 2, 7, 8]),

> Transformation([1, 2, 5, 3, 6, 8, 4, 4]));;

gap> IsCliffordSemigroup(S);

true

gap> T := Range(IsomorphismPartialPermSemigroup(S));;

gap> IsCliffordSemigroup(S);

true

gap> S := DualSymmetricInverseMonoid(5);;

gap> T := IdempotentGeneratedSubsemigroup(S);;

gap> IsCliffordSemigroup(T);

true

4.7.2 IsBrandtSemigroup

. IsBrandtSemigroup(S) (property)

Returns: true or false.

IsBrandtSemigroup return true if the semigroup S is a 0-simple inverse semigroup, and false

if it is not. See also IsZeroSimpleSemigroup (4.6.24) and IsInverseSemigroup (Reference:

IsInverseSemigroup).

Semigroups 87

Example
gap> S := Semigroup(Transformation([2, 8, 8, 8, 8, 8, 8, 8]),

> Transformation([5, 8, 8, 8, 8, 8, 8, 8]),

> Transformation([8, 3, 8, 8, 8, 8, 8, 8]),

> Transformation([8, 6, 8, 8, 8, 8, 8, 8]),

> Transformation([8, 8, 1, 8, 8, 8, 8, 8]),

> Transformation([8, 8, 8, 1, 8, 8, 8, 8]),

> Transformation([8, 8, 8, 8, 4, 8, 8, 8]),

> Transformation([8, 8, 8, 8, 8, 7, 8, 8]),

> Transformation([8, 8, 8, 8, 8, 8, 2, 8]));;

gap> IsBrandtSemigroup(S);

true

gap> T := Range(IsomorphismPartialPermSemigroup(S));;

gap> IsBrandtSemigroup(T);

true

gap> S := DualSymmetricInverseMonoid(4);;

gap> D := DClasses(S)[3];

<Green's D-class: <block bijection: [1, 2, 3, -1, -2, -3],

[4, -4]>>

gap> R := InjectionPrincipalFactor(D);;

gap> S := Semigroup(PreImages(R, GeneratorsOfSemigroup(Range(R))));;

gap> IsBrandtSemigroup(S);

true

4.7.3 IsEUnitaryInverseSemigroup

. IsEUnitaryInverseSemigroup(S) (property)

Returns: true or false.

As described in Section 5.9 of [How95], an inverse semigroup S with semilattice of idempotents

E is E-unitary if for

s 2 S and e 2 E: es 2 E) s 2 E:

Equivalently, S is E-unitary if E is closed in the natural partial order (see Proposition 5.9.1 in

[How95]):

for s 2 S and e 2 E: e� s) s 2 E:

This condition is equivalent to E being majorantly closed in S . See

IdempotentGeneratedSubsemigroup (4.5.5) and IsMajorantlyClosed (4.7.6). Hence an

inverse semigroup of partial permutations, block bijections or partial permutation bipartitions is

E-unitary if and only if the idempotent semilattice is majorantly closed.
Example

gap> S := InverseSemigroup([PartialPerm([1, 2, 3, 4], [2, 3, 1, 6]),

> PartialPerm([1, 2, 3, 5], [3, 2, 1, 6])]);;

gap> IsEUnitaryInverseSemigroup(S);

true

gap> e := IdempotentGeneratedSubsemigroup(S);;

gap> ForAll(Difference(S,e), x->not ForAny(e, y->y*x in e));

true

gap> T := InverseSemigroup([

> PartialPerm([1, 3, 4, 6, 8], [2, 5, 10, 7, 9]),

> PartialPerm([1, 2, 3, 5, 6, 7, 8], [5, 8, 9, 2, 10, 1, 3]),

> PartialPerm([1, 2, 3, 5, 6, 7, 9], [9, 8, 4, 1, 6, 7, 2])]);;

Semigroups 88

gap> IsEUnitaryInverseSemigroup(T);

false

gap> U := InverseSemigroup([

> PartialPerm([1, 2, 3, 4, 5], [2, 3, 4, 5, 1]),

> PartialPerm([1, 2, 3, 4, 5], [2, 1, 3, 4, 5])]);;

gap> IsEUnitaryInverseSemigroup(U);

true

gap> IsGroupAsSemigroup(U);

true

gap> StructureDescription(U);

"S5"

4.7.4 IsFactorisableSemigroup

. IsFactorisableSemigroup(S) (property)

Returns: true or false.

An inverse monoid is factorisable if every element is the product of an element of the group of

units and an idempotent; see also GroupOfUnits (4.5.2) and Idempotents (4.5.3). Hence an inverse

semigroup of partial permutations is factorisable if and only if each of its generators is the restriction

of some element in the group of units.
Example

gap> S := InverseSemigroup(PartialPerm([1, 2, 4], [3, 1, 4]),

> PartialPerm([1, 2, 3, 5], [4, 1, 5, 2]));;

gap> IsFactorisableSemigroup(S);

false

gap> IsFactorisableSemigroup(SymmetricInverseSemigroup(5));

true

gap> IsFactorisableSemigroup(DualSymmetricInverseMonoid(5));

false

gap> IsFactorisableSemigroup(FactorisableDualSymmetricInverseSemigroup(5));

true

4.7.5 IsJoinIrreducible

. IsJoinIrreducible(S, x) (operation)

Returns: true or false.

IsJoinIrreducible determines whether an element x of an inverse semigroup S of partial per-

mutations, block bijections or partial permutation bipartitions is join irreducible.

An element x is join irreducible when it is not the least upper bound (with respect to the natural

partial order NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm)) of any subset of S

not containing x .

Example
gap> S := SymmetricInverseSemigroup(3);

<symmetric inverse monoid of degree 3>

gap> x := PartialPerm([1,2,3]);

<identity partial perm on [1, 2, 3]>

gap> IsJoinIrreducible(S, x);

false

gap> T := InverseSemigroup(PartialPerm([1,2,4,3]), PartialPerm([1]),

> PartialPerm([0,2]));

Semigroups 89

<inverse partial perm semigroup of rank 4 with 3 generators>

gap> y := PartialPerm([1,2,3,4]);

<identity partial perm on [1, 2, 3, 4]>

gap> IsJoinIrreducible(T, y);

true

gap> B := InverseSemigroup([

> Bipartition([[1, -5], [2, -2],

> [3, 5, 6, 7, -1, -4, -6, -7], [4, -3]]),

> Bipartition([[1, -1], [2, -3], [3, -4],

> [4, 5, 7, -2, -6, -7], [6, -5]]),

> Bipartition([[1, -2], [2, -4], [3, -6],

> [4, -1], [5, 7, -3, -7], [6, -5]]),

> Bipartition([[1, -5], [2, -1], [3, -6],

> [4, 5, 7, -2, -4, -7], [6, -3]])]);

<inverse bipartition semigroup of degree 7 with 4 generators>

gap> x := Bipartition([[1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7],

> [4, -1]]);

<block bijection: [1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7],

[4, -1]>

gap> IsJoinIrreducible(B, x);

true

gap> IsJoinIrreducible(B, B.1);

false

4.7.6 IsMajorantlyClosed

. IsMajorantlyClosed(S, T) (operation)

Returns: true or false.

IsMajorantlyClosed determines whether the subset T of the inverse semigroup of partial per-

mutations, block bijections or partial permutation bipartitions S is majorantly closed in S . See also

MajorantClosure (4.7.9).

We say that T is majorantly closed in S if it contains all elements of S which are greater than or

equal to any element of T , with respect to the natural partial order. See NaturalLeqPartialPerm

(Reference: NaturalLeqPartialPerm).

Note that T can be a subset of S or a subsemigroup of S .

Example
gap> S := SymmetricInverseSemigroup(2);

<symmetric inverse monoid of degree 2>

gap> T := [Elements(S)[2]];

[<identity partial perm on [1]>]

gap> IsMajorantlyClosed(S,T);

false

gap> U := [Elements(S)[2],Elements(S)[6]];

[<identity partial perm on [1]>, <identity partial perm on [1, 2]

>]

gap> IsMajorantlyClosed(S,U);

true

gap> D := DualSymmetricInverseSemigroup(3);

<inverse bipartition monoid of degree 3 with 3 generators>

gap> x := Bipartition([[1, -2], [2, -3], [3, -1]]);;

gap> IsMajorantlyClosed(D, [x]);

Semigroups 90

true

gap> y := Bipartition([[1, 2, -1, -2], [3, -3]]);;

gap> IsMajorantlyClosed(D, [x,y]);

false

4.7.7 IsMonogenicInverseSemigroup

. IsMonogenicInverseSemigroup(S) (property)

Returns: true or false.

IsMonogenicInverseSemigroup returns true if the semigroup S is an inverse monogenic semi-

group and it returns false if it is not.

A inverse semigroup is monogenic if it is generated as an inverse semigroup by a single element.

See also IsMonogenicSemigroup (4.6.10) and IndexPeriodOfTransformation (Reference: Ind-

exPeriodOfTransformation).
Example

gap> f := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;

gap> S := InverseSemigroup(f, f^2, f^3);;

gap> IsMonogenicSemigroup(S);

false

gap> IsMonogenicInverseSemigroup(S);

true

gap> x := Random(DualSymmetricInverseMonoid(100));;

gap> S := InverseSemigroup(x, x^2, x^20);;

gap> IsMonogenicInverseSemigroup(S);

true

4.7.8 JoinIrreducibleDClasses

. JoinIrreducibleDClasses(S) (attribute)

Returns: A list of D-classes.

JoinIrreducibleDClasses returns a list of the join irreducible D-classes of the inverse semi-

group of partial permutations, block bijections or partial permutation bipartitions S .

A join irreducible D-class is a D-class containing only join irreducible elements. See

IsJoinIrreducible (4.7.5). If a D-class contains one join irreducible element, then all of the ele-

ments in the D-class are join irreducible.

Example
gap> S := SymmetricInverseSemigroup(3);

<symmetric inverse monoid of degree 3>

gap> JoinIrreducibleDClasses(S);

[<Green's D-class: <identity partial perm on [1]>>]

gap> T := InverseSemigroup(

> PartialPerm([1, 2, 3, 4], [1, 2, 4, 3]),

> PartialPerm([1], [1]), PartialPerm([2], [2]));

<inverse partial perm semigroup of rank 4 with 3 generators>

gap> JoinIrreducibleDClasses(T);

[<Green's D-class: <identity partial perm on [1, 2, 3, 4]>>,

<Green's D-class: <identity partial perm on [1]>>,

<Green's D-class: <identity partial perm on [2]>>]

gap> D := DualSymmetricInverseSemigroup(3);

<inverse bipartition monoid of degree 3 with 3 generators>

Semigroups 91

gap> JoinIrreducibleDClasses(D);

[<Green's D-class: <block bijection: [1, 2, -1, -2], [3, -3]>>]

4.7.9 MajorantClosure

. MajorantClosure(S, T) (operation)

Returns: A majorantly closed list of elements.

MajorantClosure returns a majorantly closed subset of an inverse semigroup of partial permu-

tations, block bijections or partial permutation bipartitions, S , as a list. See IsMajorantlyClosed

(4.7.6).

The result contains all elements of S which are greater than or equal to any element of T (with re-

spect to the natural partial order NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm)).

In particular, the result is a superset of T .

Note that T can be a subset of S or a subsemigroup of S .

Example
gap> S := SymmetricInverseSemigroup(4);

<symmetric inverse monoid of degree 4>

gap> T := [PartialPerm([1,0,3,0])];

[<identity partial perm on [1, 3]>]

gap> U := MajorantClosure(S,T);

[<identity partial perm on [1, 3]>,

<identity partial perm on [1, 2, 3]>, [2,4](1)(3), [4,2](1)(3),

<identity partial perm on [1, 3, 4]>,

<identity partial perm on [1, 2, 3, 4]>, (1)(2,4)(3)]

gap> B := InverseSemigroup([

> Bipartition([[1, -2], [2, -1], [3, -3], [4, 5, -4, -5]]),

> Bipartition([[1, -3], [2, -4], [3, -2],

> [4, -1], [5, -5]])]);;

gap> T := [

> Bipartition([[1, -2], [2, 3, 5, -1, -3, -5], [4, -4]]),

> Bipartition([[1, -4], [2, 3, 5, -1, -3, -5], [4, -2]])];;

gap> IsMajorantlyClosed(B,T);

false

gap> MajorantClosure(B,T);

[<block bijection: [1, -2], [2, 3, 5, -1, -3, -5], [4, -4]>,

<block bijection: [1, -4], [2, 3, 5, -1, -3, -5], [4, -2]>,

<block bijection: [1, -2], [2, 5, -1, -5], [3, -3], [4, -4]>

, <block bijection: [1, -2], [2, -1], [3, 5, -3, -5],

[4, -4]>,

<block bijection: [1, -4], [2, 5, -3, -5], [3, -1], [4, -2]>

, <block bijection: [1, -4], [2, -3], [3, 5, -1, -5],

[4, -2]>, <block bijection: [1, -4], [2, -3], [3, -1],

[4, -2], [5, -5]>]

gap> IsMajorantlyClosed(B, last);

true

4.7.10 Minorants

. Minorants(S, f) (operation)

Returns: A list of elements.

Semigroups 92

Minorants takes an element f from an inverse semigroup of partial permutations, block bijections

or partial permutation bipartitions S , and returns a list of the minorants of f in S .

A minorant of f is an element of S which is strictly less than f in the natural partial order of S .

See NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm).

Example
gap> s := SymmetricInverseSemigroup(3);

<symmetric inverse monoid of degree 3>

gap> f := Elements(s)[13];

[1,3](2)

gap> Minorants(s,f);

[<empty partial perm>, [1,3], <identity partial perm on [2]>]

gap> f := PartialPerm([3,2,4,0]);

[1,3,4](2)

gap> S := InverseSemigroup(f);

<inverse partial perm semigroup of rank 4 with 1 generator>

gap> Minorants(S,f);

[<identity partial perm on [2]>, [1,3](2), [3,4](2)]

4.7.11 PrimitiveIdempotents

. PrimitiveIdempotents(S) (attribute)

Returns: A list of idempotent partial permutations.

An idempotent in an inverse semigroup S is primitive if it is non-zero and minimal with respect

to the NaturalPartialOrder (Reference: NaturalPartialOrder) on S . PrimitiveIdempotents

returns the list of primitive idempotents in the inverse semigroup of partial permutations S .
Example

gap> S:= InverseMonoid(

> PartialPerm([1], [4]),

> PartialPerm([1, 2, 3], [2, 1, 3]),

> PartialPerm([1, 2, 3], [3, 1, 2]));;

gap> MultiplicativeZero(S);

<empty partial perm>

gap> PrimitiveIdempotents(S);

[<identity partial perm on [4]>, <identity partial perm on [1]>,

<identity partial perm on [2]>, <identity partial perm on [3]>]

gap> S := DualSymmetricInverseMonoid(4);

<inverse bipartition monoid of degree 4 with 3 generators>

gap> PrimitiveIdempotents(S);

[<block bijection: [1, 2, 3, -1, -2, -3], [4, -4]>,

<block bijection: [1, 2, 4, -1, -2, -4], [3, -3]>,

<block bijection: [1, -1], [2, 3, 4, -2, -3, -4]>,

<block bijection: [1, 2, -1, -2], [3, 4, -3, -4]>,

<block bijection: [1, 3, 4, -1, -3, -4], [2, -2]>,

<block bijection: [1, 4, -1, -4], [2, 3, -2, -3]>,

<block bijection: [1, 3, -1, -3], [2, 4, -2, -4]>]

4.7.12 RightCosetsOfInverseSemigroup

. RightCosetsOfInverseSemigroup(S, T) (operation)

Returns: A list of lists of elements.

Semigroups 93

RightCosetsOfInverseSemigroup takes a majorantly closed inverse subsemigroup T of an in-

verse semigroup of partial permutations, block bijections or partial permutation bipartitions S . See

IsMajorantlyClosed (4.7.6). The result is a list of the right cosets of T in S .

For s 2 S, the right coset Ts is de�ned if and only if ss�1 2 T , in which case it is de�ned to be the

majorant closure of the set Ts. See MajorantClosure (4.7.9). Distinct cosets are disjoint but do not

necessarily partition S .

Example
gap> S := SymmetricInverseSemigroup(3);

<symmetric inverse monoid of degree 3>

gap> T := InverseSemigroup(MajorantClosure(S,[PartialPerm([1])]));

<inverse partial perm monoid of rank 3 with 6 generators>

gap> IsMajorantlyClosed(S,T);

true

gap> RC := RightCosetsOfInverseSemigroup(S,T);

[[<identity partial perm on [1]>,

<identity partial perm on [1, 2]>, [2,3](1), [3,2](1),

<identity partial perm on [1, 3]>,

<identity partial perm on [1, 2, 3]>, (1)(2,3)],

[[1,3], [2,1,3], [1,3](2), (1,3), [1,3,2], (1,3,2), (1,3)(2)],

[[1,2], (1,2), [1,2,3], [3,1,2], [1,2](3), (1,2)(3), (1,2,3)]]

4.7.13 SameMinorantsSubgroup

. SameMinorantsSubgroup(H) (attribute)

Returns: A list of elements of the groupH -class H .

Given a group H -class H in an inverse semigroup of partial permutations, block bijections or

partial permutation bipartitions S, SameMinorantsSubgroup returns a list of the elements of H which

have the same strict minorants as the identity element of H . A strict minorant of x in H is an element

of S which is less than x (with respect to the natural partial order), but is not equal to x.

The returned list of elements of H describe a subgroup of H .

Example
gap> S := SymmetricInverseSemigroup(3);

<symmetric inverse monoid of degree 3>

gap> H := GroupHClass(GreensDClasses(S)[1]);

<Green's H-class: <identity partial perm on [1, 2, 3]>>

gap> Elements(H);

[<identity partial perm on [1, 2, 3]>, (1)(2,3), (1,2)(3),

(1,2,3), (1,3,2), (1,3)(2)]

gap> SameMinorantsSubgroup(H);

[<identity partial perm on [1, 2, 3]>]

gap> T := InverseSemigroup(

> PartialPerm([1, 2, 3, 4], [1, 2, 4, 3]),

> PartialPerm([1], [1]), PartialPerm([2], [2]));

<inverse partial perm semigroup of rank 4 with 3 generators>

gap> Elements(T);

[<empty partial perm>, <identity partial perm on [1]>,

<identity partial perm on [2]>,

<identity partial perm on [1, 2, 3, 4]>, (1)(2)(3,4)]

gap> x := GroupHClass(GreensDClasses(T)[1]);

<Green's H-class: <identity partial perm on [1, 2, 3, 4]>>

Semigroups 94

gap> Elements(x);

[<identity partial perm on [1, 2, 3, 4]>, (1)(2)(3,4)]

gap> SameMinorantsSubgroup(x);

[<identity partial perm on [1, 2, 3, 4]>, (1)(2)(3,4)]

4.7.14 SmallerDegreePartialPermRepresentation

. SmallerDegreePartialPermRepresentation(S) (attribute)

Returns: An isomorphism.

SmallerDegreePartialPermRepresentation attempts to �nd an isomorphism from the in-

verse semigroup S of partial permutations to another inverse semigroup of partial permutations with

smaller degree. If the function cannot reduce the degree, the identity mapping is returned.

There is no guarantee that the smallest possible degree representation is returned. For more infor-

mation see [Sch92].

Example
gap> S := InverseSemigroup(PartialPerm([2, 1, 4, 3, 6, 5, 8, 7]));

<commutative inverse partial perm semigroup of rank 8 with 1

generator>

gap> Elements(S);

[<identity partial perm on [1, 2, 3, 4, 5, 6, 7, 8]>,

(1,2)(3,4)(5,6)(7,8)]

gap> T := SmallerDegreePartialPermRepresentation(S);

MappingByFunction(<partial perm group of size 2, rank 8 with

1 generator>, <commutative inverse partial perm semigroup of rank 2

with 1 generator>, function(x) ... end, function(x) ... end)

gap> R := Range(T);

<commutative inverse partial perm semigroup of rank 2 with 1

generator>

gap> Elements(R);

[<identity partial perm on [1, 2]>, (1,2)]

gap> S := DualSymmetricInverseMonoid(5);;

gap> T := Range(IsomorphismPartialPermSemigroup(S));

<inverse partial perm monoid of rank 6721 with 3 generators>

4.7.15 VagnerPrestonRepresentation

. VagnerPrestonRepresentation(S) (attribute)

Returns: An isomorphism to an inverse semigroup of partial permutations.

VagnerPrestonRepresentation returns an isomorphism from an inverse semigroup S where

the elements of S have a unique semigroup inverse accessible via Inverse (Reference: Inverse), to

the inverse semigroup of partial permutations T of degree equal to the size of S , which is obtained

using the Vagner-Preston Representation Theorem.

More precisely, if f : S ! T is the isomorphism returned by

VagnerPrestonRepresentation(S) and x is in S , then f (x) is the partial permutation with

domain Sx�1 and range Sx�1x de�ned by f (x) : sx�1 7! sx�1x.

In many cases, it is possible to �nd a smaller degree representation than that provided by

VagnerPrestonRepresentation using IsomorphismPartialPermSemigroup (Reference: Iso-

morphismPartialPermSemigroup) or SmallerDegreePartialPermRepresentation (4.7.14).

Semigroups 95

Example
gap> S := SymmetricInverseSemigroup(2);

<symmetric inverse monoid of degree 2>

gap> Size(S);

7

gap> iso := VagnerPrestonRepresentation(S);

MappingByFunction(<symmetric inverse monoid of degree 2>,

<inverse partial perm monoid of rank 7 with 2 generators>

, function(x) ... end, function(x) ... end)

gap> RespectsMultiplication(iso);

true

gap> inv := InverseGeneralMapping(iso);;

gap> ForAll(S, x-> (x^iso)^inv=x);

true

gap> V := InverseSemigroup([

> Bipartition([[1, -4], [2, -1], [3, -5],

> [4], [5], [-2], [-3]]),

> Bipartition([[1, -5], [2, -1], [3, -3],

> [4], [5], [-2], [-4]]),

> Bipartition([[1, -2], [2, -4], [3, -5],

> [4, -1], [5, -3]])]);

<inverse bipartition semigroup of degree 5 with 3 generators>

gap> IsInverseSemigroup(V);

true

gap> VagnerPrestonRepresentation(V);

MappingByFunction(<inverse bipartition semigroup of size 394,

degree 5 with 3 generators>, <inverse partial perm semigroup of

rank 394 with 5 generators>

, function(x) ... end, function(x) ... end)

4.7.16 CharacterTableOfInverseSemigroup

. CharacterTableOfInverseSemigroup(S) (attribute)

Returns: The character table of the inverse semigroup S and a list of conjugacy class represen-

tatives of S .

Returns a list with two entries: the �rst entry being the character table of the inverse semigroup S

as a matrix, while the second entry is a list of conjugacy class representatives of S .

The order of the columns in the character table matrix follows the order of the conjugacy class

representatives list. The conjugacy representatives are grouped by D-class and then sorted by rank.

Also, as is typical of character tables, the rows of the matrix correspond to the irreducible characters

and the columns correspond to the conjugacy classes.

This function was contributed by Jhevon Smith and Ben Steinberg.

Example
gap> S := InverseMonoid([PartialPerm([1, 2], [3, 1]),

> PartialPerm([1, 2, 3], [1, 3, 4]),

> PartialPerm([1, 2, 3], [2, 4, 1]),

> PartialPerm([1, 3, 4], [3, 4, 1])]);;

gap> CharacterTableOfInverseSemigroup(S);

[[[1, 0, 0, 0, 0, 0, 0, 0], [3, 1, 1, 1, 0, 0, 0, 0],

[3, 1, E(3), E(3)^2, 0, 0, 0, 0],

[3, 1, E(3)^2, E(3), 0, 0, 0, 0], [6, 3, 0, 0, 1, -1, 0, 0],

Semigroups 96

[6, 3, 0, 0, 1, 1, 0, 0], [4, 3, 0, 0, 2, 0, 1, 0],

[1, 1, 1, 1, 1, 1, 1, 1]],

[<identity partial perm on [1, 2, 3, 4]>,

<identity partial perm on [1, 3, 4]>, (1,3,4), (1,4,3),

<identity partial perm on [1, 3]>, (1,3),

<identity partial perm on [3]>, <empty partial perm>]]

gap> S := SymmetricInverseMonoid(4);;

gap> CharacterTableOfInverseSemigroup(S);

[[[1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0],

[3, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0],

[2, 0, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0],

[3, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0],

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],

[4, -2, 1, 0, 0, 1, -1, 1, 0, 0, 0, 0],

[8, 0, -1, 0, 0, 2, 0, -1, 0, 0, 0, 0],

[4, 2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0],

[6, 0, 0, -2, 0, 3, -1, 0, 1, -1, 0, 0],

[6, 2, 0, 2, 0, 3, 1, 0, 1, 1, 0, 0],

[4, 2, 1, 0, 0, 3, 1, 0, 2, 0, 1, 0],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],

[<identity partial perm on [1, 2, 3, 4]>, (1)(2)(3,4),

(1)(2,3,4), (1,2)(3,4), (1,2,3,4),

<identity partial perm on [1, 2, 3]>, (1)(2,3), (1,2,3),

<identity partial perm on [1, 2]>, (1,2),

<identity partial perm on [1]>, <empty partial perm>]]

4.8 Visualising the structure of a semigroup

In this section, we describe some functions for creating pictures of various structures related to a

semigroup of transformations, partial permutations, or bipartitions; or a subsemigroup of a Rees 0-

matrix semigroup.

Several of the functions described in this section return a string, which can be written to a �le

using the function FileString (GAPDoc: FileString) or viewed using Splash (4.8.1).

4.8.1 Splash

. Splash(str[, opts]) (function)

Returns: Nothing.

This function attempts to convert the string str into a pdf document and open this document, i.e.

to splash it all over your monitor.

The string str must correspond to a valid dot or LaTeX text �le and you must have have

GraphViz and pdflatex installed on your computer. For details about these �le formats, see

http://www.latex-project.org and http://www.graphviz.org.

This function is provided to allow convenient, immediate viewing of the pictures produced by

the functions: TikzBlocks (5.8.2), TikzBipartition (5.8.1), DotSemilatticeOfIdempotents

(4.8.3), and DotDClasses (4.8.2).

The optional second argument opts should be a record with components corresponding to various

options, given below.

http://www.latex-project.org
http://www.graphviz.org

Semigroups 97

path this should be a string representing the path to the directory where you want Splash to do its

work. The default value of this option is "~/".

directory

this should be a string representing the name of the directory in path where you want Splash

to do its work. This function will create this directory if does not already exist.

The default value of this option is "tmp.viz" if the option path is present, and the result of

DirectoryTemporary (Reference: DirectoryTemporary) is used otherwise.

�lename

this should be a string representing the name of the �le where str will be written. The default

value of this option is "vizpicture".

viewer

this should be a string representing the name of the program which should open the �les pro-

duced by GraphViz or pdflatex.

type this option can be used to specify that the string str contains a LATEX or dot document. You

can specify this option in str directly by making the �rst line "%latex" or "//dot". There is

no default value for this option, this option must be speci�ed in str or in opt.type .

�letype

this should be a string representing the type of �le which Splash should produce. For LATEX

�les, this option is ignored and the default value "pdf" is used.

This function was written by Attila Egri-Nagy and Manuel Delgado with some minor changes by J.

D. Mitchell.

Example
gap> Splash(DotDClasses(FullTransformationMonoid(4)));

4.8.2 DotDClasses (for a semigroup)

. DotDClasses(S) (attribute)

. DotDClasses(S, record) (operation)

Returns: A string.

This function produces a graphical representation of the partial order of the D-classes of the

semigroup S together with the eggbox diagram of each D-class. The output is in dot format (also

known as GraphViz) format. For details about this �le format, and information about how to display

or edit this format see http://www.graphviz.org.

The string returned by DotDClasses can be written to a �le using the command FileString

(GAPDoc: FileString).

The D-classes are shown as eggbox diagrams withL -classes as rows andR-classes as columns;

group H -classes are shaded gray and contain an asterisk. The D-classes are numbered accord-

ing to their index in GreensDClasses(S), so that an i appears next to the eggbox diagram of

GreensDClasses(S)[i]. A red line from one D-class to another indicates that the higher D-class

is greater than the lower one in the D-order on S .

If the optional second argument record is present, it can be used to specify some options for

output.

http://www.graphviz.org

Semigroups 98

number

if record.number is false, then the D-classes in the diagram are not numbered according to

their index in the list of D-classes of S . The default value for this option is true.

maximal

if record.maximal is true, then the structure description of the groupH -classes is displayed;

see StructureDescription (Reference: StructureDescription). Setting this attribute to

true can adversely affect the performance of DotDClasses. The default value for this op-

tion is false.
Example

gap> S:=FullTransformationSemigroup(3);

<full transformation semigroup of degree 3>

gap> DotDClasses(S);

"digraph DClasses {\nnode [shape=plaintext]\nedge [color=red,arrowhe\

ad=none]\n1 [shape=box style=dotted label=<\n<TABLE BORDER=\"0\" CELL\

BORDER=\"1\" CELLPADDING=\"10\" CELLSPACING=\"0\" PORT=\"1\">\n<TR BO\

RDER=\"0\"><TD COLSPAN=\"1\" BORDER=\"0\" >1</TD></TR><TR><TD BGCOLOR\

=\"grey\">*</TD></TR>\n</TABLE>>];\n2 [shape=box style=dotted label=<\

\n<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLPADDING=\"10\" CELLSPACING\

=\"0\" PORT=\"2\">\n<TR BORDER=\"0\"><TD COLSPAN=\"3\" BORDER=\"0\" >\

2</TD></TR><TR><TD BGCOLOR=\"grey\">*</TD><TD BGCOLOR=\"grey\">*</TD>\

<TD></TD></TR>\n<TR><TD BGCOLOR=\"grey\">*</TD><TD></TD><TD BGCOLOR=\

\"grey\">*</TD></TR>\n<TR><TD></TD><TD BGCOLOR=\"grey\">*</TD><TD BGC\

OLOR=\"grey\">*</TD></TR>\n</TABLE>>];\n3 [shape=box style=dotted lab\

el=<\n<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLPADDING=\"10\" CELLSPA\

CING=\"0\" PORT=\"3\">\n<TR BORDER=\"0\"><TD COLSPAN=\"1\" BORDER=\"0\

\" >3</TD></TR><TR><TD BGCOLOR=\"grey\">*</TD></TR>\n<TR><TD BGCOLOR=\

\"grey\">*</TD></TR>\n<TR><TD BGCOLOR=\"grey\">*</TD></TR>\n</TABLE>>\

];\n1 -> 2\n2 -> 3\n }"

gap> FileString(DotDClasses(S), "t3.dot");

fail

gap> FileString("t3.dot", DotDClasses(S));

966

4.8.3 DotSemilatticeOfIdempotents

. DotSemilatticeOfIdempotents(S) (attribute)

Returns: A string.

This function produces a graphical representation of the semilattice of the idempotents of an in-

verse semigroup S where the elements of S have a unique semigroup inverse accessible via Inverse

(Reference: Inverse). The idempotents are grouped by the D-class they belong to.

The output is in dot format (also known as GraphViz) format. For details about this �le format,

and information about how to display or edit this format see http://www.graphviz.org.

Example
gap> S:=DualSymmetricInverseMonoid(4);

<inverse bipartition monoid of degree 4 with 3 generators>

gap> DotSemilatticeOfIdempotents(S);

"graph graphname {\n node [shape=point]\nranksep=2;\nsubgraph cluste\

r_1{\n15 \n}\nsubgraph cluster_2{\n5 11 14 8 12 13 \n}\nsubgraph clus\

ter_3{\n2 3 10 4 6 9 7 \n}\nsubgraph cluster_4{\n1 \n}\n2 -- 1\n3 -- \

1\n4 -- 1\n5 -- 2\n5 -- 3\n5 -- 4\n6 -- 1\n7 -- 1\n8 -- 2\n8 -- 6\n8 \

http://www.graphviz.org

Semigroups 99

-- 7\n9 -- 1\n10 -- 1\n11 -- 2\n11 -- 9\n11 -- 10\n12 -- 3\n12 -- 6\n\

12 -- 9\n13 -- 3\n13 -- 7\n13 -- 10\n14 -- 4\n14 -- 6\n14 -- 10\n15 -\

- 5\n15 -- 8\n15 -- 11\n15 -- 12\n15 -- 13\n15 -- 14\n }"

Chapter 5

Bipartitions and blocks

In this chapter we describe the functions in Semigroups for creating and manipulating bipartitions

and semigroups of bipartitions. We begin by describing what these objects are.

A partition of a set X is a set of pairwise disjoint non-empty subsets of X whose union is X .

Let n 2N, let n= f1;2; : : : ;ng, and let �n= f�1;�2; : : : ;�ng.
The partition monoid of degree n is the set of all partitions of n[-n with a multiplication we

describe below. To avoid con�ict with other uses of the word "partition" in GAP, and to re�ect their

de�nition, we have opted to refer to the elements of the partition monoid as bipartitions of degree n;

we will do so from this point on.

Let x be any bipartition of degree n. Then x is a set of pairwise disjoint non-empty subsets of n[-n
whose union is n[-n; these subsets are called the blocks of x. A block containing elements of both n

and -n is called a transverse block. If i, j2n[-n belong to the same block of a bipartition x, then we

write (i, j)2x.
Let x and y be bipartitions of equal degree. Then xy is the bipartition where i, j2n[-n belong to

the same block of xy if there exist k(1);k(2); : : : ;k(r) 2 n ; and one of the following holds:

� r= 0 and either (i, j) 2x or (-i,- j) 2y;

� r = 2s�1 for some s� 1 and

(i;�k(1))2 x; (k(1);k(2))2 y; (�k(2);�k(3))2 x; : : : ; (�k(2s�2);�k(2s�1))2 x; (k(2s�1);� j)2 y

� r = 2s for some s� 1 and either:

(i;�k(1)) 2 x; (k(1);k(2)) 2 y; (�k(2);�k(3)) 2 x; : : : ;(k(2s�1);k(2s)) 2 y; (�k(2s); j) 2 x

or

(�i;k(1))2 y; (�k(1);�k(2))2 x; (k(2);k(3))2 y; : : : ;(�k(2s�1);�k(2s))2 x; (k(2s);� j)2 y:

This product can be shown to be associative, and so the collection of bipartitions of any particular

degree is a monoid; the identity element is the partition ffi;�ig : i 2 ng. A bipartition is a unit if and

only if each block is of the form fi,- jg for some i, j2n. Hence the group of units is isomorphic to the

symmetric group on n.

100

Semigroups 101

Let x be a bipartition of degree n. Then we de�ne x� to be the bipartition obtained from x by

replacing i by -i and -i by -i in every block of x for all i2n. It is routine to verify that if x and y are

arbitrary bipartitions of equal degree, then

(x�)� = x; xx�x= x; x�xx� = x�; (xy)� = y�x�:

In this way, the partition monoid is a regular *-semigroup.

A bipartition x of degree n is called planar if there does not exist distinct blocks A;B 2 x, along

with a;a0 2 A and b;b0 2 B such that a< a0, b< b0 and either:

� a< b< a0 < b0; or

� b< a< b0 < a0.

Or equivalently, x is planar if for each distinct blocks A;B 2 x, and each a;a0 2 A and b;b0 2 B such

that a< a0 and b< b0, either:

� a< a0 < b< b0;

� a< b< b0 < a0;

� b< a< a0 < b0; or

� b< b0 < a< a0.

From a graphical perspective, as on Page 873 in [HR05], a bipartition x of degree n is planar if it can

be represented as a graph without edges crossing inside of the rectangle formed by its vertices n[-n.

5.1 The family and categories of bipartitions

5.1.1 IsBipartition

. IsBipartition(obj) (Category)

Returns: true or false.

Every bipartition in GAP belongs to the category IsBipartition. Basic operations

for bipartitions are RightBlocks (5.5.4), LeftBlocks (5.5.5), ExtRepOfBipartition (5.5.3),

LeftProjection (5.2.4), RightProjection (5.2.5), StarOp (5.2.6), DegreeOfBipartition

(5.5.1), RankOfBipartition (5.5.2), multiplication of two bipartitions of equal degree is via *.

5.1.2 IsBipartitionCollection

. IsBipartitionCollection(obj) (Category)

Returns: true or false.

Every collection of bipartitions belongs to the category IsBipartitionCollection. For exam-

ple, bipartition semigroups belong to IsBipartitionCollection.

5.1.3 BipartitionFamily

. BipartitionFamily (family)

The family of all bipartitions is BipartitionFamily.

Semigroups 102

5.2 Creating bipartitions

There are several ways of creating bipartitions in GAP, which are described in this section.

5.2.1 Bipartition

. Bipartition(blocks) (function)

Returns: A bipartition.

Bipartition returns the bipartition f with equivalence classes blocks , which should be a list of

duplicate-free lists whose union is [-n..-1] union [1..n] for some positive integer n.

Bipartition returns an error if the argument does not de�ne a bipartition.
Example

gap> f:=Bipartition([[1, -1],[2, 3, -3], [-2]]);

<bipartition: [1, -1], [2, 3, -3], [-2]>

5.2.2 BipartitionByIntRep

. BipartitionByIntRep(list) (operation)

Returns: A bipartition.

It is possible to create a bipartition using its internal representation. The argument list must be

a list of positive integers not greater than n, of length 2*n, and where i appears in the list only if i-1

occurs earlier in the list.

For example, the internal representation of the bipartition with blocks
Example

[1, -1], [2, 3, -2], [-3]

has internal representation
Example

[1, 2, 2, 1, 2, 3]

The internal representation indicates that the number 1 is in class 1, the number 2 is in class 2, the

number 3 is in class 2, the number -1 is in class 1, the number -2 is in class 2, and -3 is in class 3.

As another example, [1, 3, 2, 1] is not the internal representation of any bipartition since there

is no 2 before the 3 in the second position.

In its �rst form BipartitionByIntRep veri�es that the argument list is the internal represen-

tation of a bipartition.
Example

gap> BipartitionByIntRep([1, 2, 2, 1, 3, 4]);

<bipartition: [1, -1], [2, 3], [-2], [-3]>

5.2.3 IdentityBipartition

. IdentityBipartition(n) (operation)

Returns: The identity bipartition.

Returns the identity bipartition with degree n .
Example

gap> IdentityBipartition(10);

<block bijection: [1, -1], [2, -2], [3, -3], [4, -4],

[5, -5], [6, -6], [7, -7], [8, -8], [9, -9], [10, -10]>

Semigroups 103

5.2.4 LeftOne (for a bipartition)

. LeftOne(f) (attribute)

. LeftProjection(f) (attribute)

Returns: A bipartition.

The LeftProjection of a bipartition f is the bipartition f*Star(f). It is so-named, since the

left and right blocks of the left projection equal the left blocks of f .

The left projection e of f is also a bipartition with the property that e*f=f . LeftOne and

LeftProjection are synonymous.
Example

gap> f:=Bipartition([[1, 4, -1, -2, -6], [2, 3, 5, -4],

> [6, -3], [-5]]);;

gap> LeftOne(f);

<block bijection: [1, 4, -1, -4], [2, 3, 5, -2, -3, -5],

[6, -6]>

gap> LeftBlocks(f);

<blocks: [1, 4], [2, 3, 5], [6]>

gap> RightBlocks(LeftOne(f));

<blocks: [1, 4], [2, 3, 5], [6]>

gap> LeftBlocks(LeftOne(f));

<blocks: [1, 4], [2, 3, 5], [6]>

gap> LeftOne(f)*f=f;

true

5.2.5 RightOne (for a bipartition)

. RightOne(f) (attribute)

. RightProjection(f) (attribute)

Returns: A bipartition.

The RightProjection of a bipartition f is the bipartition Star(f)*f . It is so-named, since the

left and right blocks of the right projection equal the right blocks of f .

The right projection e of f is also a bipartition with the property that f*e=f . RightOne and

RightProjection are synonymous.
Example

gap> f:=Bipartition([[1, -1, -4], [2, -2, -3], [3, 4],

> [5, -5]]);;

gap> RightOne(f);

<block bijection: [1, 4, -1, -4], [2, 3, -2, -3], [5, -5]>

gap> RightBlocks(RightOne(f));

<blocks: [1, 4], [2, 3], [5]>

gap> LeftBlocks(RightOne(f));

<blocks: [1, 4], [2, 3], [5]>

gap> RightBlocks(f);

<blocks: [1, 4], [2, 3], [5]>

gap> f*RightOne(f)=f;

true

5.2.6 StarOp

. StarOp(f) (operation)

. Star(f) (attribute)

Semigroups 104

Returns: A bipartition.

StarOp returns the unique bipartition g with the property that: f*g*f=f ,

RightBlocks(f)=LeftBlocks(g), and LeftBlocks(f)=RightBlocks(g). The star g can

be obtained from f by changing the sign of every integer in the external representation of f .
Example

gap> f:=Bipartition([[1, -4], [2, 3, 4], [5], [-1],

> [-2, -3], [-5]]);

<bipartition: [1, -4], [2, 3, 4], [5], [-1], [-2, -3],

[-5]>

gap> g:=Star(f);

<bipartition: [1], [2, 3], [4, -1], [5], [-2, -3, -4],

[-5]>

gap> f*g*f=f;

true

gap> LeftBlocks(f)=RightBlocks(g);

true

gap> RightBlocks(f)=LeftBlocks(g);

true

5.2.7 RandomBipartition

. RandomBipartition(n) (operation)

Returns: A bipartition.

If n is a positive integer, then RandomBipartition returns a random bipartition of degree n .
Example

gap> f:=RandomBipartition(6);

<bipartition: [1, 2, 3, 4], [5], [6, -2, -3, -4], [-1, -5], [-6]>

5.3 Changing the representation of a bipartition

It is possible that a bipartition can be represented as another type of object, or that another type ofGAP

object can be represented as a bipartition. In this section, we describe the functions in theSemigroups

package for changing the representation of bipartition, or for changing the representation of another

type of object to that of a bipartition.

The operations AsPermutation (5.3.5), AsPartialPerm (5.3.4), AsTransformation (5.3.3) can

be used to convert bipartitions into permutations, partial permutations, or transformations where ap-

propriate.

5.3.1 AsBipartition

. AsBipartition(f[, n]) (operation)

Returns: A bipartition.

AsBipartition returns the bipartition, permutation, transformation, or partial permutation f , as

a bipartition of degree n . There are several possible arguments for AsBipartition:

permutations

If f is a permutation and n is a positive integer, then AsBipartition(f, n) returns the

bipartition on [1..n] with classes [i, i^f] for all i=1..n.

Semigroups 105

If no positive integer n is speci�ed, then the largest moved point of f is used as the value for n ;

see LargestMovedPoint (Reference: LargestMovedPoint for a permutation).

transformations

If f is a transformation and n is a positive integer such that f is a transformation of [1..n],

then AsTransformation returns the bipartition with classes (i) f�1[fig for all i in the image

of f .

If the positive integer n is not speci�ed, then the internal degree of f is used as the value for n .

partial permutations

If f is a partial permutation f and n is a positive integer, then AsBipartition returns the

bipartition with classes [i, i^f] for i in [1..n]. Thus the degree of the returned bipartition

is the maximum of n and the values i^f where i in [1..n].

If the optional argument n is not present, then the default value of the maximum of the largest

moved point and the largest image of a moved point of f plus 1 is used.

bipartitions

If f is a bipartition and n is a non-negative integer, then AsBipartition returns a bipartition

corresponding to f with degree n .

If n equals the degree of f , then f is returned. If n is less than the degree of f , then this

function returns the bipartition obtained from f by removing the values exceeding n or less

than -n from the blocks of f . If n is greater than the degree of f , then this function returns the

bipartition with the same blocks as f and the singleton blocks i and -i for all i greater than

the degree of f

Example
gap> f:=Transformation([3, 5, 3, 4, 1, 2]);;

gap> AsBipartition(f, 5);

<bipartition: [1, 3, -3], [2, -5], [4, -4], [5, -1], [-2]>

gap> AsBipartition(f);

<bipartition: [1, 3, -3], [2, -5], [4, -4], [5, -1],

[6, -2], [-6]>

gap> AsBipartition(f, 10);

<bipartition: [1, 3, -3], [2, -5], [4, -4], [5, -1],

[6, -2], [7, -7], [8, -8], [9, -9], [10, -10], [-6]>

gap> AsBipartition((1, 3)(2, 4));

<block bijection: [1, -3], [2, -4], [3, -1], [4, -2]>

gap> AsBipartition((1, 3)(2, 4), 10);

<block bijection: [1, -3], [2, -4], [3, -1], [4, -2],

[5, -5], [6, -6], [7, -7], [8, -8], [9, -9], [10, -10]>

gap> f:=PartialPerm([1, 2, 3, 4, 5, 6], [6, 7, 1, 4, 3, 2]);;

gap> AsBipartition(f, 11);

<bipartition: [1, -6], [2, -7], [3, -1], [4, -4], [5, -3],

[6, -2], [7], [8], [9], [10], [11], [-5], [-8],

[-9], [-10], [-11]>

gap> AsBipartition(f);

<bipartition: [1, -6], [2, -7], [3, -1], [4, -4], [5, -3],

[6, -2], [7], [-5]>

gap> AsBipartition(Transformation([1, 1, 2]), 1);

<block bijection: [1, -1]>

gap> f:=Bipartition([[1, 2, -2], [3], [4, 5, 6, -1],

Semigroups 106

> [-3, -4, -5, -6]]);;

gap> AsBipartition(f, 0);

<empty bipartition>

gap> AsBipartition(f, 2);

<bipartition: [1, 2, -2], [-1]>

gap> AsBipartition(f, 8);

<bipartition: [1, 2, -2], [3], [4, 5, 6, -1], [7], [8],

[-3, -4, -5, -6], [-7], [-8]>

5.3.2 AsBlockBijection

. AsBlockBijection(f[, n]) (operation)

Returns: A block bijection or fail.

When the argument f is a partial perm and n is a positive integer which is greater than the maxi-

mum of the degree and codegree of f , this function returns a block bijection corresponding to f . This

block bijection has the same non-singleton classes as g:=AsBipartition(f, n) and one additional

class which is the union the singleton classes of g.

If the optional second argument n is not present, then the maximum of the degree and codegree

of f plus 1 is used by default. If the second argument n is not greater than this maximum, then fail

is returned.

This is the value at f of the embedding of the symmetric inverse monoid into the dual symmetric

inverse monoid given in the FitzGerald-Leech Theorem [FL98].

Example
gap> f:=PartialPerm([1, 2, 3, 6, 7, 10], [9, 5, 6, 1, 7, 8]) ;

[2,5][3,6,1,9][10,8](7)

gap> AsBipartition(f, 11);

<bipartition: [1, -9], [2, -5], [3, -6], [4], [5],

[6, -1], [7, -7], [8], [9], [10, -8], [11], [-2],

[-3], [-4], [-10], [-11]>

gap> AsBlockBijection(f, 10);

fail

gap> AsBlockBijection(f, 11);

<block bijection: [1, -9], [2, -5], [3, -6],

[4, 5, 8, 9, 11, -2, -3, -4, -10, -11], [6, -1], [7, -7],

[10, -8]>

5.3.3 AsTransformation (for a bipartition)

. AsTransformation(f) (operation)

Returns: A transformation or fail.

When the argument f is a bipartition, that mathematically de�nes a transformation, this function

returns that transformation. A bipartition f de�nes a transformation if and only if its right blocks are

the image list of a permutation of [1..n] where n is the degree of f .

See IsTransBipartition (5.5.9).

Example
gap> f:=Bipartition([[1, -3], [2, -2], [3, 5, 10, -7], [4, -12],

> [6, 7, -6], [8, -5], [9, -11], [11, 12, -10], [-1], [-4],

> [-8], [-9]]);;

gap> AsTransformation(f);

Semigroups 107

Transformation([3, 2, 7, 12, 7, 6, 6, 5, 11, 7, 10, 10])

gap> IsTransBipartition(f);

true

gap> f:=Bipartition([[1, 5], [2, 4, 8, 10], [3, 6, 7, -1, -2],

> [9, -4, -6, -9], [-3, -5], [-7, -8], [-10]]);;

gap> AsTransformation(f);

fail

5.3.4 AsPartialPerm (for a bipartition)

. AsPartialPerm(f) (operation)

Returns: A partial perm or fail.

When the argument f is a bipartition that mathematically de�nes a partial perm, this function

returns that partial perm.

A bipartition f de�nes a partial perm if and only if its numbers of left and right blocks both equal

its degree.

See IsPartialPermBipartition (5.5.12).

Example
gap> f:=Bipartition([[1, -4], [2, -2], [3, -10], [4, -5],

> [5, -9], [6], [7], [8, -6], [9, -3], [10, -8],

> [-1], [-7]]);;

gap> IsPartialPermBipartition(f);

true

gap> AsPartialPerm(f);

[1,4,5,9,3,10,8,6](2)

gap> f:=Bipartition([[1, -2, -4], [2, 3, 4, -3], [-1]]);;

gap> IsPartialPermBipartition(f);

false

gap> AsPartialPerm(f);

fail

5.3.5 AsPermutation (for a bipartition)

. AsPermutation(f) (operation)

Returns: A permutation or fail.

When the argument f is a bipartition that mathematically de�nes a permutation, this function

returns that permutation.

A bipartition f de�nes a permutation if and only if its numbers of left, right, and transverse blocks

all equal its degree.

See IsPermBipartition (5.5.11).

Example
gap> f:=Bipartition([[1, -6], [2, -4], [3, -2], [4, -5],

> [5, -3], [6, -1]]);;

gap> IsPermBipartition(f);

true

gap> AsPermutation(f);

(1,6)(2,4,5,3)

gap> AsBipartition(last)=f;

true

Semigroups 108

5.4 Operators for bipartitions

f * g

returns the composition of f and g when f and g are bipartitions.

f < g

returns true if the internal representation of f is lexicographically less than the internal repre-

sentation of g and false if it is not.

f = g

returns true if the bipartition f equals the bipartition g and returns false if it does not.

5.4.1 PartialPermLeqBipartition

. PartialPermLeqBipartition(x, y) (operation)

Returns: true or false.

If x and y are partial perm bipartitions, i.e. they satisfy IsPartialPermBipartition (5.5.12),

then this function returns AsPartialPerm(x)<AsPartialPerm(y).

5.4.2 NaturalLeqPartialPermBipartition

. NaturalLeqPartialPermBipartition(x, y) (operation)

Returns: true or false.

The natural partial order � on an inverse semigroup S is de�ned by s�t if there exists an idem-

potent e in S such that s=et. Hence if x and y are partial perm bipartitions, then x�y if and only if

AsPartialPerm(x) is a restriction of AsPartialPerm(y).

NaturalLeqPartialPermBipartition returns true if AsPartialPerm(x) is a restriction of

AsPartialPerm(y) and false if it is not. Note that since this is a partial order and not a total order,

it is possible that x and y are incomparable with respect to the natural partial order.

5.4.3 NaturalLeqBlockBijection

. NaturalLeqBlockBijection(x, y) (operation)

Returns: true or false.

The natural partial order � on an inverse semigroup S is de�ned by s�t if there exists an idem-

potent e in S such that s=et. Hence if x and y are block bijections, then x�y if and only if x contains

y .

NaturalLeqBlockBijection returns true if x is contained in y and false if it is not. Note

that since this is a partial order and not a total order, it is possible that x and y are incomparable with

respect to the natural partial order.
Example

gap> x:=Bipartition([[1, 2, -3], [3, -1, -2], [4, -4],

> [5, -5], [6, -6], [7, -7], [8, -8], [9, -9],

> [10, -10]]);;

gap> y:=Bipartition([[1, -2], [2, -1], [3, -3], [4, -4],

> [5, -5], [6, -6], [7, -7], [8, -8], [9, -9], [10, -10]]);;

gap> z:=Bipartition([Union([1..10],[-10..-1])]);;

gap> NaturalLeqBlockBijection(x, y);

false

gap> NaturalLeqBlockBijection(y, x);

Semigroups 109

false

gap> NaturalLeqBlockBijection(z, x);

true

gap> NaturalLeqBlockBijection(z, y);

true

5.4.4 PermLeftQuoBipartition

. PermLeftQuoBipartition(f, g) (operation)

Returns: A permutation.

If f and g are bipartitions with equal left and right blocks, then PermLeftQuoBipartition

returns the permutation of the indices of the right blocks of f (and g) induced by Star(f)*g .

PermLeftQuoBipartition veri�es that f and g have equal left and right blocks, and returns

an error if they do not. The value returned by PermLeftQuoBipartition(f,g) is the same as

that returned by PermRightBlocks(RightBlocks(f), Star(f)*g). See also PermRightBlocks

(5.7.3) and OnRightBlocksBipartitionByPerm (5.4.5).

Example
gap> f:=Bipartition([[1, 4, 6, 7, 8, 10], [2, 5, -1, -2, -8],

> [3, -3, -6, -7, -9], [9, -4, -5], [-10]]);;

gap> g:=Bipartition([[1, 4, 6, 7, 8, 10], [2, 5, -3, -6, -7, -9],

> [3, -4, -5], [9, -1, -2, -8], [-10]]);;

gap> PermLeftQuoBipartition(f, g);

(1,2,3)

gap> Star(f)*g;

<bipartition: [1, 2, 8, -3, -6, -7, -9], [3, 6, 7, 9, -4, -5],

[4, 5, -1, -2, -8], [10], [-10]>

gap> PermRightBlocks(RightBlocks(f), last);

(1,2,3)

5.4.5 OnRightBlocksBipartitionByPerm

. OnRightBlocksBipartitionByPerm(f, p) (function)

Returns: A bipartition.

If f is a bipartition and p is a permutation of the indices of the right blocks of f , then

OnRightBlocksBipartitionByPerm returns the bipartition obtained from f by rearranging the right

blocks of f according to p .
Example

gap> f:=Bipartition([[1, 4, 6, 7, 8, 10], [2, 5, -1, -2, -8],

> [3, -3, -6, -7, -9], [9, -4, -5], [-10]]);;

gap> OnRightBlocksBipartitionByPerm(f, (1,2,3));

<bipartition: [1, 4, 6, 7, 8, 10], [2, 5, -3, -6, -7, -9],

[3, -4, -5], [9, -1, -2, -8], [-10]>

5.5 Attributes for bipartitons

In this section we describe various attributes that a bipartition can possess.

Semigroups 110

5.5.1 DegreeOfBipartition

. DegreeOfBipartition(f) (attribute)

. DegreeOfBipartitionCollection(f) (attribute)

Returns: A positive integer.

The degree of a bipartition is, roughly speaking, the number of points where it is de�ned. More

precisely, if f is a bipartition de�ned on 2*n points, then the degree of f is n.

The degree of a collection coll of bipartitions of equal degree is just the degree of any (and every)

bipartition in coll . The degree of collection of bipartitions of unequal degrees is not de�ned.
Example

gap> f:=Bipartition([[1, 7, -3, -8], [2, 6], [3], [4, -7, -9],

> [5, 9, -2], [8, -1, -4, -6], [-5]]);;

gap> DegreeOfBipartition(f);

9

gap> s:=BrauerMonoid(5);

<regular bipartition monoid of degree 5 with 3 generators>

gap> IsBipartitionCollection(s);

true

gap> DegreeOfBipartitionCollection(s);

5

5.5.2 RankOfBipartition

. RankOfBipartition(f) (attribute)

. NrTransverseBlocks(f) (attribute)

Returns: The rank of a bipartition.

When the argument is a bipartition f , RankOfBipartition returns the number of blocks of f

containing both positive and negative entries, i.e. the number of transverse blocks of f .

NrTransverseBlocks is just a synonym for RankOfBipartition.
Example

gap> f:=Bipartition([[1, 2, 6, 7, -4, -5, -7], [3, 4, 5, -1, -3],

> [8, -9], [9, -2], [-6], [-8]]);

<bipartition: [1, 2, 6, 7, -4, -5, -7], [3, 4, 5, -1, -3],

[8, -9], [9, -2], [-6], [-8]>

gap> RankOfBipartition(f);

4

5.5.3 ExtRepOfBipartition

. ExtRepOfBipartition(f) (attribute)

Returns: A partition of [1..2*n].

If n is the degree of the bipartition f , then ExtRepOfBipartition returns the partition of

[-n..-1] union [1..n] corresponding to f as a sorted list of duplicate-free lists.

Example
gap> f:=Bipartition([[1, 5, -3], [2, 4, -2, -4], [3, -1, -5]]);

<block bijection: [1, 5, -3], [2, 4, -2, -4], [3, -1, -5]>

gap> ExtRepOfBipartition(f);

[[1, 5, -3], [2, 4, -2, -4], [3, -1, -5]]

Semigroups 111

5.5.4 RightBlocks

. RightBlocks(f) (attribute)

Returns: The right blocks of a bipartition.

RightBlocks returns the right blocks of the bipartition f .

The right blocks of a bipartition f are just the intersections of the blocks of f with [-n..-1]

where n is the degree of f , the values in transverse blocks are positive, and the values in non-transverse

blocks are negative.

The right blocks of bipartition are GAP objects in their own right, and are not simply a list of

blocks of f ; see 5.6 for more information.

The signi�cance of this notion lies in the fact that bipartitions x and y areL -related in the partition

monoid if and only if they have equal right blocks.

Example
gap> f:=Bipartition([[1, 4, 7, 8, -4], [2, 3, 5, -2, -7],

> [6, -1], [-3], [-5, -6, -8]]);;

gap> RightBlocks(f);

<blocks: [1], [2, 7], [-3], [4], [-5, -6, -8]>

gap> LeftBlocks(f);

<blocks: [1, 4, 7, 8], [2, 3, 5], [6]>

5.5.5 LeftBlocks

. LeftBlocks(f) (attribute)

Returns: The left blocks of a bipartition.

LeftBlocks returns the left blocks of the bipartition f .

The left blocks of a bipartition f are just the intersections of the blocks of f with [1..n] where n

is the degree of f , the values in transverse blocks are positive, and the values in non-transverse blocks

are negative.

The left blocks of bipartition areGAP objects in their own right, and are not simply a list of blocks

of f ; see 5.6 for more information.

The signi�cance of this notion lies in the fact that bipartitions x and y areR-related in the partition

monoid if and only if they have equal left blocks.

Example
gap> f:=Bipartition([[1, 4, 7, 8, -4], [2, 3, 5, -2, -7],

> [6, -1], [-3], [-5, -6, -8]]);;

gap> RightBlocks(f);

<blocks: [1], [2, 7], [-3], [4], [-5, -6, -8]>

gap> LeftBlocks(f);

<blocks: [1, 4, 7, 8], [2, 3, 5], [6]>

5.5.6 NrLeftBlocks

. NrLeftBlocks(f) (attribute)

Returns: A non-negative integer.

When the argument is a bipartition f , NrLeftBlocks returns the number of left blocks of f , i.e.

the number of blocks of f intersecting [1..n] non-trivially.

Example
gap> f:=Bipartition([[1, 2, 3, 4, 5, 6, 8], [7, -2, -3],

> [-1, -4, -7, -8], [-5, -6]]);;

Semigroups 112

gap> NrLeftBlocks(f);

2

gap> LeftBlocks(f);

<blocks: [-1, -2, -3, -4, -5, -6, -8], [7]>

5.5.7 NrRightBlocks

. NrRightBlocks(f) (attribute)

Returns: A non-negative integer.

When the argument is a bipartition f , NrRightBlocks returns the number of right blocks of f ,

i.e. the number of blocks of f intersecting [-n..-1] non-trivially.

Example
gap> f:=Bipartition([[1, 2, 3, 4, 6, -2, -7], [5, -1, -3, -8],

> [7, -4, -6], [8], [-5]]);;

gap> RightBlocks(f);

<blocks: [1, 3, 8], [2, 7], [4, 6], [-5]>

gap> NrRightBlocks(f);

4

5.5.8 NrBlocks (for blocks)

. NrBlocks(blocks) (attribute)

. NrBlocks(f) (attribute)

Returns: A positive integer.

If blocks is some blocks or f is a bipartition, then NrBlocks returns the number of blocks in

blocks or f , respectively.
Example

gap> blocks:=BlocksNC([[-1, -2, -3, -4], [-5], [6]]);

<blocks: [-1, -2, -3, -4], [-5], [6]>

gap> NrBlocks(blocks);

3

gap> f:=Bipartition([[1, 5], [2, 4, -2, -4], [3, 6, -1, -5, -6],

> [-3]]);

<bipartition: [1, 5], [2, 4, -2, -4], [3, 6, -1, -5, -6],

[-3]>

gap> NrBlocks(f);

4

5.5.9 IsTransBipartition

. IsTransBipartition(f) (property)

Returns: true or false.

If the bipartition f de�nes a transformation, then IsTransBipartition returns true, and if not,

then false is returned.

A bipartition f de�nes a transformation if and only if the number of left blocks equals the number

of transverse blocks and the number of right blocks equals the degree.

Example
gap> f:=Bipartition([[1, 4, -2], [2, 5, -6], [3, -7], [6, 7, -9],

> [8, 9, -1], [10, -5], [-3], [-4], [-8], [-10]]);;

Semigroups 113

gap> IsTransBipartition(f);

true

gap> f:=Bipartition([[1, 4, -3, -6], [2, 5, -4, -5], [3, 6, -1],

> [-2]]);;

gap> IsTransBipartition(f);

false

gap> Number(PartitionMonoid(3), IsTransBipartition);

27

5.5.10 IsDualTransBipartition

. IsDualTransBipartition(f) (property)

Returns: true or false.

If the star of the bipartition f de�nes a transformation, then IsDualTransBipartition returns

true, and if not, then false is returned.

A bipartition is the dual of a transformation if and only if its number of right blocks equals its

number of transverse blocks and its number of left blocks equals its degree.
Example

gap> f:=Bipartition([[1, -8, -9], [2, -1, -4], [3], [4],

> [5, -10], [6, -2, -5], [7, -3], [8], [9, -6, -7], [10]]);;

gap> IsDualTransBipartition(f);

true

gap> f:=Bipartition([[1, 4, -3, -6], [2, 5, -4, -5], [3, 6, -1],

> [-2]]);;

gap> IsTransBipartition(f);

false

gap> Number(PartitionMonoid(3), IsDualTransBipartition);

27

5.5.11 IsPermBipartition

. IsPermBipartition(f) (property)

Returns: true or false.

If the bipartition f de�nes a permutation, then IsPermBipartition returns true, and if not,

then false is returned.

A bipartition is a permutation if its numbers of left, right, and transverse blocks all equal its degree.
Example

gap> f:=Bipartition([[1, 4, -1], [2, -3], [3, 6, -5],

> [5, -2, -4, -6]]);;

gap> IsPermBipartition(f);

false

gap> f:=Bipartition([[1, -3], [2, -4], [3, -6],

> [4, -1], [5, -5], [6, -2], [7, -8], [8, -7]]);;

gap> IsPermBipartition(f);

true

5.5.12 IsPartialPermBipartition

. IsPartialPermBipartition(f) (property)

Returns: true or false.

Semigroups 114

If the bipartition f de�nes a partial permutation, then IsPartialPermBipartition returns

true, and if not, then false is returned.

A bipartition f de�nes a partial permutation if and only if the numbers of left and right blocks of

f equal the degree of f .
Example

gap> f:=Bipartition([[1, 4, -1], [2, -3], [3, 6, -5],

> [5, -2, -4, -6]]);;

gap> IsPartialPermBipartition(f);

false

gap> f:=Bipartition([[1, -3], [2], [-4], [3, -6], [4, -1],

> [5, -5], [6, -2], [7, -8], [8, -7]]);;

gap> IsPermBipartition(f);

false

gap> IsPartialPermBipartition(f);

true

5.5.13 IsBlockBijection

. IsBlockBijection(f) (property)

Returns: true or false.

If the bipartition f induces a bijection from the quotient of [1..n] by the blocks of f to the

quotient of [-n..-1] by the blocks of f , then IsBlockBijection return true, and if not, then it

returns false.

A bipartition is a block bijection if and only if its number of blocks, left blocks and right blocks

are equal.
Example

gap> f:=Bipartition([[1, 4, 5, -2], [2, 3, -1],

> [6, -5, -6], [-3, -4]]);;

gap> IsBlockBijection(f);

false

gap> f:=Bipartition([[1, 2, -3], [3, -1, -2], [4, -4],

> [5, -5]]);;

gap> IsBlockBijection(f);

true

5.5.14 IsUniformBlockBijection

. IsUniformBlockBijection(x) (property)

Returns: true or false.

If the bipartition x is a block bijection where every block contains an equal number of positive

and negative entries, then IsUniformBlockBijection returns true, and otherwise it returns false.
Example

gap> x:=Bipartition([[1, 2, -3, -4], [3, -5], [4, -6],

> [5, -7], [6, -8], [7, -9], [8, -1], [9, -2]]);;

gap> IsBlockBijection(x);

true

gap> x:=Bipartition([[1, 2, -3], [3, -1, -2], [4, -4],

> [5, -5]]);;

gap> IsUniformBlockBijection(x);

false

Semigroups 115

5.6 Creating blocks and their attributes

As described above the left and right blocks of a bipartition characterise Green's R- and L -relation

on the partition monoid; see LeftBlocks (5.5.5) and RightBlocks (5.5.4). The left or right blocks

of a bipartition are GAP objects in their own right.

In this section, we describe the functions in the Semigroups package for creating and manipulat-

ing the left or right blocks of a bipartition.

5.6.1 BlocksNC

. BlocksNC(classes) (function)

Returns: A blocks.

This function makes it possible to create a GAP object corresponding to the left or right blocks of

a bipartition without reference to any bipartitions.

BlocksNC returns the blocks with equivalence classes classes , which should be a list of

duplicate-free lists consisting solely of positive or negative integers, where the union of the abso-

lute values of the lists is [1..n] for some n. The blocks with positive entries correspond to transverse

blocks and the classes with negative entries correspond to non-transverse blocks.

Example
gap> BlocksNC([[1], [2], [-3, -6], [-4, -5]]);

<blocks: [1], [2], [-3, -6], [-4, -5]>

5.6.2 ExtRepOfBlocks

. ExtRepOfBlocks(blocks) (attribute)

Returns: A list of integers.

If n is the degree of a bipartition with left or right blocks blocks , then ExtRepOfBlocks returns

the partition corresponding to blocks as a sorted list of duplicate-free lists.

Example
gap> blocks:=BlocksNC([[1, 6], [2, 3, 7], [4, 5], [-8]]);;

gap> ExtRepOfBlocks(blocks);

[[1, 6], [2, 3, 7], [4, 5], [-8]]

5.6.3 RankOfBlocks

. RankOfBlocks(blocks) (attribute)

. NrTransverseBlocks(blocks) (attribute)

Returns: A non-negative integer.

When the argument blocks is the left or right blocks of a bipartition, RankOfBlocks returns the

number of blocks of blocks containing only positive entries, i.e. the number of transverse blocks in

blocks .

NrTransverseBlocks is a synonym of RankOfBlocks in this context.

Example
gap> blocks:=BlocksNC([[-1, -2, -4, -6], [3, 10, 12], [5, 7],

> [8], [9], [-11]]);;

gap> RankOfBlocks(blocks);

4

Semigroups 116

5.6.4 DegreeOfBlocks

. DegreeOfBlocks(blocks) (attribute)

Returns: A non-negative integer.

The degree of blocks is the number of points n where it is de�ned, i.e. the union of the blocks in

blocks will be [1..n] after taking the absolute value of every element.

Example
gap> blocks:=BlocksNC([[-1, -11], [2], [3, 5, 6, 7], [4, 8],

> [9, 10], [12]]);;

gap> DegreeOfBlocks(blocks);

12

5.7 Actions on blocks

Bipartitions act on left and right blocks in several ways, which are described in this section.

5.7.1 OnRightBlocks

. OnRightBlocks(blocks, f) (function)

Returns: The blocks of a bipartition.

OnRightBlocks returns the right blocks of the product g*f where g is any bipartition whose right

blocks are equal to blocks .
Example

gap> f:=Bipartition([[1, 4, 5, 8], [2, 3, 7], [6, -3, -4, -5],

> [-1, -2, -6], [-7, -8]]);;

gap> g:=Bipartition([[1, 5], [2, 4, 8, -2], [3, 6, 7, -3, -4],

> [-1, -6, -8], [-5, -7]]);;

gap> RightBlocks(g*f);

<blocks: [-1, -2, -6], [3, 4, 5], [-7, -8]>

gap> OnRightBlocks(RightBlocks(g), f);

<blocks: [-1, -2, -6], [3, 4, 5], [-7, -8]>

5.7.2 OnLeftBlocks

. OnLeftBlocks(blocks, f) (function)

Returns: The blocks of a bipartition.

OnLeftBlocks returns the left blocks of the product f*g where g is any bipartition whose left

blocks are equal to blocks .
Example

gap> f:=Bipartition([[1, 5, 7, -1, -3, -4, -6], [2, 3, 6, 8],

> [4, -2, -5, -8], [-7]]);;

gap> g:=Bipartition([[1, 3, -4, -5], [2, 4, 5, 8], [6, -1, -3],

> [7, -2, -6, -7, -8]]);;

gap> LeftBlocks(f*g);

<blocks: [1, 4, 5, 7], [-2, -3, -6, -8]>

gap> OnLeftBlocks(LeftBlocks(g), f);

<blocks: [1, 4, 5, 7], [-2, -3, -6, -8]>

Semigroups 117

5.7.3 PermRightBlocks

. PermRightBlocks(blocks, f) (operation)

. PermLeftBlocks(blocks, f) (operation)

Returns: A permutation.

If f is a bipartition that stabilises blocks , i.e. OnRightBlocks(blocks, f)=blocks , then

PermRightBlocks returns the permutation of the indices of the transverse blocks of blocks under

the action of f .

PermLeftBlocks is the analogue of PermRightBlocks with respect to OnLeftBlocks (5.7.2).

Example
gap> f:=Bipartition([[1, 10], [2, -7, -9], [3, 4, 6, 8], [5, -5],

> [7, 9, -2], [-1, -10], [-3, -4, -6, -8]]);;

gap> blocks:=BlocksNC([[-1, -10], [2], [-3, -4, -6, -8], [5],

> [7, 9]]);;

gap> OnRightBlocks(blocks, f)=blocks;

true

gap> PermRightBlocks(blocks, f);

(2,5)

5.7.4 InverseRightBlocks

. InverseRightBlocks(blocks, f) (function)

Returns: A bipartition.

If OnRightBlocks(blocks, f) has rank equal to the rank of blocks , then

InverseRightBlocks returns a bipartition g such that OnRightBlocks(blocks, f*g)=blocks

and where PermRightBlocks(blocks, f*g) is the identity permutation.

See PermRightBlocks (5.7.3) and OnRightBlocks (5.7.1).

Example
gap> f:=Bipartition([[1, 4, 7, 8, -4], [2, 3, 5, -2, -7],

> [6, -1], [-3], [-5, -6, -8]]);;

gap> blocks:=BlocksNC([[-1, -4, -5, -8], [-2, -3, -7], [6]]);;

gap> RankOfBlocks(blocks);

1

gap> RankOfBlocks(OnRightBlocks(blocks, f));

1

gap> g:=InverseRightBlocks(blocks, f);

<bipartition: [1, -6], [2, 3, 4, 5, 6, 7, 8], [-1, -4, -5, -8],

[-2, -3, -7]>

gap> blocks;

<blocks: [-1, -4, -5, -8], [-2, -3, -7], [6]>

gap> OnRightBlocks(blocks, f*g);

<blocks: [-1, -4, -5, -8], [-2, -3, -7], [6]>

gap> PermRightBlocks(blocks, f*g);

()

5.7.5 InverseLeftBlocks

. InverseLeftBlocks(blocks, f) (function)

Returns: A bipartition.

Semigroups 118

If OnLeftBlocks(blocks, f) has rank equal to the rank of blocks , then InverseLeftBlocks

returns a bipartition g such that OnLeftBlocks(blocks, g*f)=blocks and where

PermLeftBlocks(blocks, g*f) is the identity permutation.

See PermLeftBlocks (5.7.3) and OnLeftBlocks (5.7.2).
Example

gap> f:=Bipartition([[1, 4, 7, 8, -4], [2, 3, 5, -2, -7],

> [6, -1], [-3], [-5, -6, -8]]);;

gap> blocks:=BlocksNC([[-1, -2, -6], [3, 4, 5], [-7, -8]]);;

gap> RankOfBlocks(OnLeftBlocks(blocks, f));

1

gap> g:=InverseLeftBlocks(blocks, f);

<bipartition: [1, 2, 6], [3, 4, 5, -1, -2, -3, -4, -5, -6, -7, -8]

, [7, 8]>

gap> OnLeftBlocks(blocks, g*f);

<blocks: [-1, -2, -6], [3, 4, 5], [-7, -8]>

gap> PermLeftBlocks(blocks, g*f);

()

5.8 Visualising blocks and bipartitions

There are some functions in Semigroups for creating LATEX pictures of bipartitions and blocks. De-

scriptions of these methods can be found in this section.

The functions described in this section return a string, which can be written to a �le using the

function FileString (GAPDoc: FileString) or viewed using Splash (4.8.1).

5.8.1 TikzBipartition

. TikzBipartition(f[, opts]) (function)

Returns: A string.

This function produces a graphical representation of the bipartition f using the tikz package for

LATEX. More precisely, this function outputs a string containing a minimal LATEX document which can

be compiled using LATEX to produce a picture of f .

If the optional second argument opts is a record with the component colors set to true, then

the blocks of f will be colored using the standard tikz colors. Due to the limited number of colors

available in tikz this option only works when the degree of f is less than 20.
Example

gap> f:=Bipartition([[1, 5], [2, 4, -3, -5], [3, -1, -2],

> [-4]]);;

gap> TikzBipartition(f);

"%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\

t}\n\\begin{tikzpicture}\n\n %block #1\n %vertices and labels\n \\\

fill(1,2)circle(.125);\n \\draw(0.95, 2.2) node [above] {{ 1}};\n \

\\fill(5,2)circle(.125);\n \\draw(4.95, 2.2) node [above] {{ 5}};\

\n\n %lines\n \\draw(1,1.875) .. controls (1,1.1) and (5,1.1) .. (5\

,1.875);\n\n %block #2\n %vertices and labels\n \\fill(2,2)circle(\

.125);\n \\draw(1.95, 2.2) node [above] {{ 2}};\n \\fill(4,2)circ\

le(.125);\n \\draw(3.95, 2.2) node [above] {{ 4}};\n \\fill(3,0)c\

ircle(.125);\n \\draw(3, -0.2) node [below] {{ -3}};\n \\fill(5,0\

)circle(.125);\n \\draw(5, -0.2) node [below] {{ -5}};\n\n %lines\

\n \\draw(2,1.875) .. controls (2,1.3) and (4,1.3) .. (4,1.875);\n \

Semigroups 119

\\draw(3,0.125) .. controls (3,0.7) and (5,0.7) .. (5,0.125);\n \\dr\

aw(2,2)--(3,0);\n\n %block #3\n %vertices and labels\n \\fill(3,2)\

circle(.125);\n \\draw(2.95, 2.2) node [above] {{ 3}};\n \\fill(1\

,0)circle(.125);\n \\draw(1, -0.2) node [below] {{ -1}};\n \\fill\

(2,0)circle(.125);\n \\draw(2, -0.2) node [below] {{ -2}};\n\n %l\

ines\n \\draw(1,0.125) .. controls (1,0.6) and (2,0.6) .. (2,0.125);\

\n \\draw(3,2)--(2,0);\n\n %block #4\n %vertices and labels\n \\f\

ill(4,0)circle(.125);\n \\draw(4, -0.2) node [below] {{ -4}};\n\n \

%lines\n\\end{tikzpicture}\n\n\\end{document}"

5.8.2 TikzBlocks

. TikzBlocks(blocks) (function)

Returns: A string.

This function produces a graphical representation of the blocks blocks of a bipartition using the

tikz package for LATEX. More precisely, this function outputs a string containing a minimal LATEX

document which can be compiled using LATEX to produce a picture of blocks .

Example
gap> f:=Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]);;

gap> TikzBlocks(RightBlocks(f));

"%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\

t}\n\\begin{tikzpicture}\n \\draw[ultra thick](5,2)circle(.115);\n \

\\draw(1.8,5) node [top] {{1}};\n \\fill(4,2)circle(.125);\n \\dr\

aw(1.8,4) node [top] {{2}};\n \\fill(3,2)circle(.125);\n \\draw(1\

.8,3) node [top] {{3}};\n \\draw[ultra thick](2,2)circle(.115);\n \

\\draw(1.8,2) node [top] {{4}};\n \\fill(1,2)circle(.125);\n \\d\

raw(1.8,1) node [top] {{5}};\n\n \\draw (5,2.125) .. controls (5,2\

.8) and (2,2.8) .. (2,2.125);\n \\draw (4,2.125) .. controls (4,2.6)\

and (3,2.6) .. (3,2.125);\n\\end{tikzpicture}\n\n\\end{document}"

5.9 Semigroups of bipartitions

Semigroups and monoids of bipartitions can be created in the usual way in GAP using the functions

Semigroup (Reference: Semigroup) and Monoid (Reference: Monoid).

It is possible to create inverse semigroups and monoids of bipartitions using InverseSemigroup

(Reference: InverseSemigroup) and InverseMonoid (Reference: InverseMonoid) when the argu-

ment is a collection of block bijections or partial perm bipartions; see IsBlockBijection (5.5.13)

and IsPartialPermBipartition (5.5.12).

5.9.1 IsBipartitionSemigroup

. IsBipartitionSemigroup(S) (property)

. IsBipartitionMonoid(S) (property)

Returns: true or false.

A bipartition semigroup is simply a semigroup consisting of bipartitions. An object obj

is a bipartition semigroup in GAP if it satis�es IsSemigroup (Reference: IsSemigroup) and

IsBipartitionCollection (5.1.2).

Semigroups 120

A bipartition monoid is a monoid consisting of bipartitions. An object obj is a bipartition monoid

in GAP if it satis�es IsMonoid (Reference: IsMonoid) and IsBipartitionCollection (5.1.2).

Note that it is possible for a bipartition semigroup to have a multiplicative neutral element (i.e. an

identity element) but not to satisfy IsBipartitionMonoid. For example,

Example
gap> f:=Bipartition([[1, 4, -2], [2, 5, -6], [3, -7],

> [6, 7, -9], [8, 9, -1], [10, -5], [-3], [-4],

> [-8], [-10]]);;

gap> S:=Semigroup(f, One(f));

<commutative bipartition monoid of degree 10 with 1 generator>

gap> IsMonoid(S);

true

gap> IsBipartitionMonoid(S);

true

gap> S:=Semigroup(Bipartition([[1, -3], [2, -8], [3, 8, -1],

> [4, -4], [5, -5], [6, -6], [7, -7], [9, 10, -10],

> [-2], [-9]]),

> Bipartition([[1, -1], [2, -2], [3, -3], [4, -4],

> [5, -5], [6, -6], [7, -7], [8, -8], [9, 10, -10],

> [-9]]));;

gap> One(S);

fail

gap> MultiplicativeNeutralElement(S);

<bipartition: [1, -1], [2, -2], [3, -3], [4, -4], [5, -5],

[6, -6], [7, -7], [8, -8], [9, 10, -10], [-9]>

gap> IsMonoid(S);

false

In this example S cannot be converted into a monoid using AsMonoid (Reference: AsMonoid) since

the One (Reference: One) of any element in S differs from the multiplicative neutral element.

For more details see IsMagmaWithOne (Reference: IsMagmaWithOne).

5.9.2 IsBlockBijectionSemigroup

. IsBlockBijectionSemigroup(S) (property)

. IsBlockBijectionMonoid(S) (property)

Returns: true or false.

A block bijection semigroup is simply a semigroup consisting of block bijections. A block bijec-

tion monoid is a monoid consisting of block bijections.

An object in GAP is a block bijection monoid if it satis�es IsMonoid (Reference: IsMonoid)

and IsBlockBijectionSemigroup.

See IsBlockBijection (5.5.13).

5.9.3 IsPartialPermBipartitionSemigroup

. IsPartialPermBipartitionSemigroup(S) (property)

. IsPartialPermBipartitionMonoid(S) (property)

Returns: true or false.

A partial perm bipartition semigroup is simply a semigroup consisting of partial perm bipartitions.

A partial perm bipartition monoid is a monoid consisting of partial perm bipartitions.

Semigroups 121

An object in GAP is a partial perm bipartition monoid if it satis�es IsMonoid (Reference: Is-

Monoid) and IsPartialPermBipartitionSemigroup.

See IsPartialPermBipartition (5.5.12).

5.9.4 IsPermBipartitionGroup

. IsPermBipartitionGroup(S) (property)

Returns: true or false.

A perm bipartition group is simply a semigroup consisting of perm bipartitions.

See IsPermBipartition (5.5.11).

5.9.5 DegreeOfBipartitionSemigroup

. DegreeOfBipartitionSemigroup(S) (attribute)

Returns: A non-negative integer.

The degree of a bipartition semigroup S is just the degree of any (and every) element of S .
Example

gap> DegreeOfBipartitionSemigroup(JonesMonoid(8));

8

Chapter 6

Free inverse semigroups and free bands

This chapter describes the functions in Semigroups for dealing with free inverse semigroups and free

bands. This part of the manual and the functions described herein were written by Julius Jonu�as.

6.1 Free inverse semigroups

F is a free inverse semigroup on a non-empty set X if F is an inverse semigroup with a map f

from F to X such that for every inverse semigroup S and a map g from X to S there exists a unique

homomorphism g0 from F to S such that f g0 = g. Moreover, by the universal property, every inverse

semigroup can be expressed as a quotient of a free inverse semigroup.

The internal representation of an element of a free inverse semigroup uses a Munn tree. A Munn

tree is a directed tree with distinguished start and terminal vertices and where the edges are labeled

by generators so that two edges labeled by the same generator are only incident to the same vertex if

one of the edges is coming in and the other is leaving the vertex. For more information regarding free

inverse semigroups and the Munn representations see Section 5.10 of [How95]. See also (Reference:

Inverse semigroups and monoids), (Reference: Partial permutations) and (Reference: Free

Groups, Monoids and Semigroups).

An element of a free inverse semigroup in Semigroups is be displayed, by default, as a shortest

word corresponding to the element. However, there might be more than one word of the minimum

length. For example, if x and y are generators of a free inverse semigroups, then

xyy�1xx�1x�1 = xxx�1yy�1x�1
:

See MinimalWord (6.3.2) Therefore we provide a another method for printing elements of a free

inverse semigroup: a unique canonical form. Suppose an element of a free inverse semigroup is given

as a Munn tree. Let L be the set of words corresponding to the shortest paths from the start vertex to

the leaves of the tree. Also let w be a word corresponding to the shortest path from start to terminal

vertices. The word vv�1 is an idempotent for every v in L. The canonical form is given by multiplying

these idempotents, in shortlex order, and then postmultiplying by w. For example, consider the word

xyy�1xx�1x�1 again. The words corresponding to the paths to the leaves are in this case xx and xy.

And w is an empty word since start and terminal vertices are the same. Therefore, the canonical form

is

xxx�1x�1xyy�1x�1
:

See CanonicalForm (6.3.1).

122

Semigroups 123

6.1.1 FreeInverseSemigroup (for a given rank)

. FreeInverseSemigroup(rank[, name]) (function)

. FreeInverseSemigroup(name1, name2, ...) (function)

. FreeInverseSemigroup(names) (function)

Returns: A free inverse semigroup.

Returns a free inverse semigroup on rank generators, where rank is a positive integer. If rank is

not speci�ed, the number of names is used. If S is a free inverse semigroup, then the generators can

be accessed by S.1, S.2 and so on.

Example
gap> S := FreeInverseSemigroup(7);

<free inverse semigroup on the generators

[x1, x2, x3, x4, x5, x6, x7]>

gap> S := FreeInverseSemigroup(7,"s");

<free inverse semigroup on the generators

[s1, s2, s3, s4, s5, s6, s7]>

gap> S := FreeInverseSemigroup("a", "b", "c");

<free inverse semigroup on the generators [a, b, c]>

gap> S := FreeInverseSemigroup(["a", "b", "c"]);

<free inverse semigroup on the generators [a, b, c]>

gap> S.1;

a

gap> S.2;

b

6.1.2 IsFreeInverseSemigroupCategory

. IsFreeInverseSemigroupCategory(obj) (Category)

Every free inverse semigroup in GAP created by FreeInverseSemigroup (6.1.1) be-

longs to the category IsFreeInverseSemigroup. Basic operations for a free inverse semi-

group are: GeneratorsOfInverseSemigroup (Reference: GeneratorsOfInverseSemigroup) and

GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup). Elements of a free inverse semi-

group belong to the category IsFreeInverseSemigroupElement (6.1.4).

6.1.3 IsFreeInverseSemigroup

. IsFreeInverseSemigroup(S) (property)

Returns: true or false

Attempts to determine whether the given semigroup S is a free inverse semigroup.

6.1.4 IsFreeInverseSemigroupElement

. IsFreeInverseSemigroupElement (Category)

Every element of a free inverse semigroup belongs to the category

IsFreeInverseSemigroupElement.

Semigroups 124

6.2 Displaying free inverse semigroup elements

There is a way to change howGAP displays free inverse semigroup elements using the user preference

FreeInverseSemigroupElementDisplay. See UserPreference (Reference: UserPreference)

for more information about user preferences.

There are two possible values for FreeInverseSemigroupElementDisplay:

minimal

With this option selected, GAP will display a shortest word corresponding to the free inverse

semigroup element. However, this shortest word is not unique. This is a default setting.

canonical

With this option selected, GAP will display a free inverse semigroup element in the canonical

form.

Example
gap> SetUserPreference("semigroups", "FreeInverseSemigroupElementDisplay", "minimal");

gap> S:=FreeInverseSemigroup(2);

<free inverse semigroup on the generators [x1, x2]>

gap> S.1 * S.2;

x1*x2

gap> SetUserPreference("semigroups", "FreeInverseSemigroupElementDisplay", "canonical");

gap> S.1 * S.2;

x1x2x2^-1x1^-1x1x2

6.3 Operators and operations for free inverse semigroup elements

w ^ -1

returns the semigroup inverse of the free inverse semigroup element w .

u * v

returns the product of two free inverse semigroup elements u and v .

u = v

checks if two free inverse semigroup elements are equal, by comparing their canonical forms.

6.3.1 CanonicalForm (for a free inverse semigroup element)

. CanonicalForm(w) (attribute)

Returns: A string.

Every element of a free inverse semigroup has a unique canonical form. If w is such an element,

then CanonicalForm returns the canonical form of w as a string.

Example
gap> S := FreeInverseSemigroup(3);

<free inverse semigroup on the generators [x1, x2, x3]>

gap> x := S.1; y := S.2;

x1

x2

gap> CanonicalForm(x^3*y^3);

"x1x1x1x2x2x2x2^-1x2^-1x2^-1x1^-1x1^-1x1^-1x1x1x1x2x2x2"

Semigroups 125

6.3.2 MinimalWord (for free inverse semigroup element)

. MinimalWord(w) (attribute)

Returns: A string.

For an element w of a free inverse semigroup S, MinimalWord returns a word of minimal length

equal to w in S as a string.

Note that there maybe more than one word of minimal length which is equal to w in S.
Example

gap> S := FreeInverseSemigroup(3);

<free inverse semigroup on the generators [x1, x2, x3]>

gap> x := S.1;

x1

gap> y := S.2;

x2

gap> MinimalWord(x^3 * y^3);

"x1*x1*x1*x2*x2*x2"

6.4 Free bands

A semigroup B is a free band on a non-empty set X if B is a band with a map f from B to X such that

for every band S and every map g from X to B there exists a unique homomorphism g0 from B to S

such that f g0 = g. The free band on a set X is unique up to isomorphism. Moreover, by the universal

property, every band can be expressed as a quotient of a free band.

For an alternative description of a free band. Suppose that X is a non-empty set and X+ a free

semigroup on X . Also suppose that b is the smallest congurance on X+ containing the set

f(w2
;w) : w 2 X+g:

Then the free band on X is isomorphic to the quotient of X+ by b. See Section 4.5 of [How95] for

more information on free bands.

6.4.1 FreeBand (for a given rank)

. FreeBand(rank[, name]) (function)

. FreeBand(name1, name2, ...) (function)

. FreeBand(names) (function)

Returns: A free band.

Returns a free band on rank generators, for a positive integer rank . If rank is not speci�ed, the

number of names is used. The resulting semigroup is always �nite.
Example

gap> FreeBand(6);

<free band on the generators [x1, x2, x3, x4, x5, x6]>

gap> FreeBand(6, "b");

<free band on the generators [b1, b2, b3, b4, b5, b6]>

gap> FreeBand("a", "b", "c");

<free band on the generators [a, b, c]>

gap> FreeBand("a", "b", "c");

<free band on the generators [a, b, c]>

gap> s := FreeBand(["a", "b", "c"]);

<free band on the generators [a, b, c]>

Semigroups 126

gap> Size(s);

159

gap> gens := Generators(s);

[a, b, c]

gap> a := gens[1];; b := gens[2];;

gap> a * b;

ab

6.4.2 IsFreeBandCategory

. IsFreeBandCategory (Category)

IsFreeBandCategory is the category of semigroups created using FreeBand (6.4.1).

Example
gap> IsFreeBandCategory(FreeBand(3));

true

gap> IsFreeBand(SymmetricGroup(6));

false

6.4.3 IsFreeBand (for a given semigroup)

. IsFreeBand(S) (property)

Returns: true or false

IsFreeBand returns true if the given semigroup S is a free band.

Example
gap> IsFreeBand(FreeBand(3));

true

gap> IsFreeBand(SymmetricGroup(6));

false

gap> IsFreeBand(FullTransformationMonoid(7));

false

6.4.4 IsFreeBandElement

. IsFreeBandElement (Category)

IsFreeBandElement is a Category containing the elements of a free band.

Example
gap> IsFreeBandElement(Generators(FreeBand(4))[1]);

true

gap> IsFreeBandElement(Transformation([1,3,4,1]));

false

gap> IsFreeBandElement((1,2,3,4));

false

6.4.5 IsFreeBandSubsemigroup

. IsFreeBandSubsemigroup (�lter)

Semigroups 127

IsFreeBandSubsemigroup is a synonym for IsSemigroup and

IsFreeBandElementCollection.
Example

gap> S := FreeBand(2);

<free band on the generators [x1, x2]>

gap> x := Generators(S)[1];

x1

gap> y := Generators(S)[2];

x2

gap> new := Semigroup([x*y, x]);

<semigroup with 2 generators>

gap> IsFreeBand(new);

false

gap> IsFreeBandSubsemigroup(new);

true

6.5 Operators and operations for free band elements

u * v

returns the product of two free band elements u and v .

u = v

checks if two free band elements are equal.

u < v

compares the sizes of the internal representations of two free band elements.

6.5.1 GreensDClassOfElement (for a free band and a free band element)

. GreensDClassOfElement(s, x) (operation)

Returns: A Green's D-class

Let S be a free band. Two elements of S areD-related if and only if they have the same content

i.e. the set of generators appearing in any factorization of the elements. Therefore, a D-class of a free

band element x is the set of elements of S which have the same content as x .
Example

gap> S := FreeBand(3, "b");

<free band on the generators [b1, b2, b3]>

gap> x := Generators(S)[1] * Generators(S)[2];

b1b2

gap> D := GreensDClassOfElement(S, x);

<Green's D-class: b1b2>

gap> IsGreensDClass(D);

true

Chapter 7

Matrix semigroups

This chapter describes the functions in Semigroups for dealing with matrix semigroups. This part of

the manual and the functions described herein were written by Markus Pfeiffer.

A matrix semigroup for the purposes of this document is a subsemigroup of the full monoid of

n�n matrices over a �nite �eld F.

More general matrix semigroups are planned, but not implemented yet.

GAP provides a way to de�ne matrices which are in the �lter IsMatrix (Reference: IsMatrix).

For technical reasons, the matrix semigroup functions in Semigroups rely on a custom wrapper for

matrices IsMatrixOverFiniteField (7.2.1).

Example
gap> x := Z(4) * [[1,0], [0,2]];

[[Z(2^2), 0*Z(2)], [0*Z(2), 0*Z(2)]]

gap> IsMatrix(x);

true

gap> IsMatrixOverFiniteField(x);

false

gap> y := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 2, x);

<matrix over GF(2^2) of degree 2>

gap> IsMatrix(y);

false

gap> IsMatrixOverFiniteField(y);

true

In the following we will refer to matrices in IsMatrix (Reference: IsMatrix) by GAP library ma-

trices and to matrices in IsMatrixOverFiniteField (7.2.1) by matrices over �nite �elds. We take

precautions to hide this fact from the user of Semigroups and also provide conversion functions

between the two representations.

7.1 Creating matrix semigroups

Random matrix semigroups can be created by using the functions RandomMatrixSemigroup (2.1.6)

or RandomMatrixMonoid (2.1.6). While this is convenient for testing and playing around, creating

semigroups from matrices can be a bit more work. We provide a couple of convenience functions to

streamline the process.

128

Semigroups 129

7.1.1 IsMatrixSemigroup

. IsMatrixSemigroup(S) (property)

. IsMatrixMonoid(S) (property)

Returns: true or false.

A matrix semigroup is simply a semigroup consisting of matrices over a �nite �eld. An ob-

ject in GAP is a matrix semigroup if it satis�es IsSemigroup (Reference: IsSemigroup) and

IsMatrixOverFiniteFieldCollection (7.2.2).

A matrix monoid is simply a monoid consisting of matrices over a �nite �eld. An

object in GAP is a matrix monoid if it satis�es IsMonoid (Reference: IsMonoid) and

IsMatrixOverFiniteFieldCollection (7.2.2).

Note that it is possible for a matrix semigroup to have a multiplicative neutral element (i.e. an

identity element) but not to satisfy IsMatrixMonoid.

7.1.2 MatrixSemigroup

. MatrixSemigroup(list[, F]) (function)

Returns: A matrix semigroup.

This is a helper function to create matrix semigroups from GAP matrices. The argument list is

a homogeneous list of GAP matrices over a �nite �eld, and the optional argument F is a �nite �eld.

The speci�cation of the �eld F can be necessary to prevent GAP from trying to �nd a smaller

common �eld for the entries in list .
Example

gap> S := MatrixSemigroup([Z(3) * [[1,0,0], [1,1,0], [0,1,0]],

> Z(3) * [[0,0,0], [0,0,1], [0,1,0]]], GF(9));

<semigroup of 3x3 matrices over GF(3^2) with 2 generators>

gap> S := MatrixSemigroup([Z(3) * [[1,0,0], [1,1,0], [0,1,0]],

> Z(3) * [[0,0,0], [0,0,1], [0,1,0]]]);

<semigroup of 3x3 matrices over GF(3) with 2 generators>

gap> S := MatrixSemigroup([Z(4) * [[1,0,0], [1,1,0], [0,1,0]],

> Z(4) * [[0,0,0], [0,0,1], [0,1,0]]]);

<semigroup of 3x3 matrices over GF(2^2) with 2 generators>

In addition to the above, IsomorphismMatrixSemigroup (2.4.5) and AsMatrixSemigroup

(2.4.1) can be used to create a matrix semigroup isomorphic to an already known semigroup.

7.2 Matrices in the Semigroups package

The matrix functions in the Semigroups package use a wrapper object for matrices. In the following

these objects are documented.

7.2.1 IsMatrixOverFiniteField

. IsMatrixOverFiniteField(obj) (Category)

Returns: true or false.

This category contains Semigroups matrix object wrapper. The introduction of this �lter was

necessary to get around GAP limitations with regards to matrices and associative objects.

The behaviour of this object type might be changed or removed completely from the package in

the future.

Semigroups 130

Example
gap> x := Z(4) * [[1,0], [0,2]];

[[Z(2^2), 0*Z(2)], [0*Z(2), 0*Z(2)]]

gap> IsMatrixOverFiniteField(x);

false

gap> y := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 2, x);

<matrix over GF(2^2) of degree 2>

gap> IsMatrixOverFiniteField(y);

true

7.2.2 IsMatrixOverFiniteFieldCollection

. IsMatrixOverFiniteFieldCollection(obj) (Category)

Returns: true or false.

Every collection of matrices in the category IsMatrixOverFiniteField (7.2.1) belongs to

the category IsMatrixOverFiniteFieldCollection. For example, matrix semigroup belong to

IsMatrixOverFiniteFieldCollection.

7.2.3 NewMatrixOverFiniteField (for a �lter, a �eld, an integer, and a list)

. NewMatrixOverFiniteField(filt, F, n, rows) (operation)

Returns: a new matrix object.

Creates a new n -by-n matrix over the �nite �eld F with constructing �lter filt . The

matrix itself is given by a list rows of rows. Currently the only possible value for filt is

IsPlistMatrixOverFiniteFieldRep.
Example

gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 2,

> Z(4)*[[1,0],[0,1]]);

<matrix over GF(2^2) of degree 2>

gap> y := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 0, []);

<matrix over GF(2^2) of degree 0>

7.2.4 NewIdentityMatrixOverFiniteField

. NewIdentityMatrixOverFiniteField(filt, F, n) (operation)

. NewZeroMatrixOverFiniteField(filt, F, n) (operation)

Creates a new n -by-n zero or identity matrix with entries in the �nite �eld F .
Example

gap> x := NewIdentityMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,

> GF(4), 2);

<matrix over GF(2^2) of degree 2>

gap> y := NewZeroMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,

> GF(4), 2);

<matrix over GF(2^2) of degree 2>

Semigroups 131

7.2.5 RowSpaceBasis (for a matrix over �nite �eld)

. RowSpaceBasis(m) (attribute)

. RowSpaceTransformation(m) (attribute)

. RowSpaceTransformationInv(m) (attribute)

To compute the value of any of the above attributes, a canonical basis for the row space

of m is computed along with an invertible matrix RowSpaceTransformation such that m *

RowSpaceTransformation(m) = RowSpaceBasis(m). RowSpaceTransformationInv(m) is the

inverse of RowSpaceTransformation(m).
Example

gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 3,

> Z(4)^0*[[1,1,0], [0,1,1], [1,1,1]]);

<matrix over GF(2^2) of degree 3>

gap> RowSpaceBasis(x);

<rowbasis of rank 3 over GF(2^2)>

gap> RowSpaceTransformation(x);

[[0*Z(2), Z(2)^0, Z(2)^0], [Z(2)^0, Z(2)^0, Z(2)^0],

[Z(2)^0, 0*Z(2), Z(2)^0]]

7.2.6 RowRank (for a matrix over �nite �eld)

. RowRank(m) (attribute)

Returns: Length of a basis of the row space of m .

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(5), 3,

> Z(5)^0*[[1,1,0], [0,0,0], [1,1,1]]);

<matrix over GF(5) of degree 3>

gap> RowRank(x);

2

7.2.7 RightInverse (for a matrix over �nite �eld)

. RightInverse(m) (attribute)

. LeftInverse(m) (attribute)

Returns: A matrix over a �nite �eld.

These attributes contain a semigroup left-inverse, and a semigroup right-inverse of the matrix m

respectively.

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 3,

> Z(4)^0*[[1,1,0], [0,0,0], [1,1,1]]);

<matrix over GF(2^2) of degree 3>

gap> LeftInverse(x);

<matrix over GF(2^2) of degree 3>

gap> Display(LeftInverse(x) * x);

<matrix over GF(2^2) of degree 3

[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0]]>

Semigroups 132

7.2.8 DegreeOfMatrixOverFiniteField (for a matrix over �nite �eld)

. DegreeOfMatrixOverFiniteField(m) (attribute)

Returns: Number of rows and columns of the matrix m .

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(5), 3,

> Z(5)^0*[[1,1,0], [0,0,0], [1,1,1]]);

<matrix over GF(5) of degree 3>

gap> DegreeOfMatrixOverFiniteField(x);

3

7.2.9 BaseDomain (for a matrix over �nite �eld)

. BaseDomain(m) (attribute)

Returns: The domain in which entries of m lie.

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(5), 3,

> Z(5)^0*[[1,1,0], [0,0,0], [1,1,1]]);

<matrix over GF(5) of degree 3>

gap> BaseDomain(x);

GF(5)

7.2.10 TransposedMatImmutable (for a matrix over �nite �eld)

. TransposedMatImmutable(m) (attribute)

Returns: An immutable matrix.

This attribute contains an immutable copy of m . Note that matrices are immutable per default.

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(5), 3,

> Z(5)^0*[[1,1,0], [0,0,0], [1,1,1]]);

<matrix over GF(5) of degree 3>

gap> TransposedMatImmutable(x);

<matrix over GF(5) of degree 3>

7.2.11 AsMatrix (for a matrix over �nite �eld)

. AsMatrix(m) (operation)

Returns: A matrix.

Turns a matrix over a �nite �eld into a GAP matrix.
Example

gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(5), 3,

> Z(5)^0*[[1,1,0], [0,0,0], [1,1,1]]);

<matrix over GF(5) of degree 3>

gap> AsMatrix(x);

[[Z(5)^0, Z(5)^0, 0*Z(5)], [0*Z(5), 0*Z(5), 0*Z(5)],

[Z(5)^0, Z(5)^0, Z(5)^0]]

Semigroups 133

7.2.12 ConstructingFilter (for a matrix over �nite �eld)

. ConstructingFilter(m) (operation)

Returns: A �lter

Return the �lter that was passed to NewMatrixOverFiniteField (7.2.3) when creating the ma-

trix m . This is used to create new objects that lie in the same �lter.

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 3,

> Z(4)^0*[[1,1,0], [0,0,0], [1,1,1]]);

<matrix over GF(2^2) of degree 3>

gap> ConstructingFilter(x);

<Representation "IsPlistMatrixOverFiniteFieldRep">

7.3 Matrix groups in the Semigroups package

For interfacing the semigroups code with GAPs library code for matrix groups, the Semigroups

package implements matrix groups that delegate to the GAP library.

7.3.1 IsMatrixOverFiniteFieldGroup

. IsMatrixOverFiniteFieldGroup(G) (property)

Returns: true or false.

A matrix group is simply a group of invertible matrices over a �nite �eld. An ob-

ject in Semigroups is a matrix group if it satis�es IsGroup (Reference: IsGroup) and

IsMatrixOverFiniteFieldCollection (7.2.2).
Example

gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 3,

> Z(4) ^ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 1]]);

<matrix over GF(2^2) of degree 3>

gap> G := Group(x);

<group of 3x3 matrices over GF(2^2) with 1 generator>

gap> IsMatrixOverFiniteFieldGroup(G);

true

gap> G := Group(Z(4) ^ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 1]]);

Group([<an immutable 3x3 matrix over GF2>])

gap> IsGroup(G);

true

gap> IsMatrixOverFiniteFieldGroup(G);

false

7.3.2 \^ (for an matrix over �nite �eld group and matrix over �nite �eld)

. \^(G, mat) (operation)

Returns: A matrix group over a �nite �eld.

The arguments of this operation, G and mat , must be categories

IsMatrixOverFiniteFieldGroup (7.3.1) and IsMatrixOverFiniteField (7.2.1). If G consists

of d by d matrices over GF(q) and mat is a d by d matrix over GF(q), then G ^ mat returns the

conjugate of G by mat inside GL(d, q).

Semigroups 134

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 3,

> Z(4) ^ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 1]]);;

gap> y := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 3,

> Z(4) ^ 0 * [[1, 0, 0], [1, 0, 1], [1, 1, 1]]);;

gap> G := Group(x);

<group of 3x3 matrices over GF(2^2) with 1 generator>

gap> G ^ y;

<group of 3x3 matrices over GF(2^2) with 1 generator>

7.3.3 IsomorphismMatrixGroup

. IsomorphismMatrixGroup(G) (attribute)

Returns: An isomorphism.

If G belongs to the category IsMatrixOverFiniteFieldGroup (7.3.1), then

IsomorphismMatrixGroup returns an isomorphism from G into a group consisting of GAP

library matrices.

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 3,

> Z(4) ^ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 1]]);;

gap> G := Group(x);;

gap> iso := IsomorphismMatrixGroup(G);;

gap> Source(iso); Range(iso);

<group of 3x3 matrices over GF(2^2) with 1 generator>

Group(

[

[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)],

[Z(2)^0, Z(2)^0, Z(2)^0]]])

7.3.4 AsMatrixGroup

. AsMatrixGroup(G) (attribute)

Returns: A group of GAP library matrices over a �nite �eld.

Returns the image of the isomorphism returned by 7.3.3.

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep, GF(4), 3,

> Z(4) ^ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 1]]);;

gap> G := Group(x);

<group of 3x3 matrices over GF(2^2) with 1 generator>

gap> AsMatrixGroup(G);

Group(

[

[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)],

[Z(2)^0, Z(2)^0, Z(2)^0]]])

Chapter 8

Congruences

Congruences in Semigroups can be described in several different ways:

� Generating pairs � the minimal congruence which contains these pairs

� Rees congruences � the congruence speci�ed by a given ideal

� Universal congruences � the unique congruence with only one class

� Linked triples � only for simple or 0-simple semigroups (see below)

� Kernel and trace � only for inverse semigroups

The operation SemigroupCongruence (8.1.1) can be used to create any of these, interpreting the argu-

ments in a smart way. The usual way of specifying a congruence will be by giving a set of generating

pairs, but a user with an ideal could instead create a Rees congruence or universal congruence.

If a congruence is speci�ed by generating pairs on a simple, 0-simple, or inverse semigroup, then

the congruence will be converted automatically to one of the last two items in the above list, to reduce

the complexity of any calculations to be performed. The user need not manually specify, or even be

aware of, the congruence's linked triple or kernel and trace.

8.1 Creating congruences

8.1.1 SemigroupCongruence

. SemigroupCongruence(S, pairs) (function)

Returns: A semigroup congruence.

This function returns a semigroup congruence over the semigroup S .

If pairs is a list of lists of size 2 with elements from S , then this function will return the semi-

group congruence de�ned by these generating pairs. The individual pairs may instead be given as

separate arguments.

Example
gap> S:=Semigroup(Transformation([2, 1, 1, 2, 1]),

> Transformation([3, 4, 3, 4, 4]),

> Transformation([3, 4, 3, 4, 3]),

> Transformation([4, 3, 3, 4, 4]));;

gap> pair1 := [Transformation([3, 4, 3, 4, 3]),

135

Semigroups 136

> Transformation([1, 2, 1, 2, 1])];;

gap> pair2 := [Transformation([4, 3, 4, 3, 4]),

> Transformation([3, 4, 3, 4, 3])];;

gap> SemigroupCongruence(S, [pair1, pair2]);

<semigroup congruence over <simple transformation semigroup of

degree 5 with 4 generators> with linked triple (2,4,1)>

gap> SemigroupCongruence(S, pair1, pair2);

<semigroup congruence over <simple transformation semigroup of

degree 5 with 4 generators> with linked triple (2,4,1)>

8.2 Congruence classes

8.2.1 CongruenceClassOfElement

. CongruenceClassOfElement(cong, elm) (operation)

Returns: A congruence class.

This operation is a synonym of EquivalenceClassOfElement in the case that the argument

cong is a congruence of a semigroup.

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(),(1,3,2)],[(1,2),0]]);;

gap> cong := CongruencesOfSemigroup(S)[3];;

gap> elm := ReesZeroMatrixSemigroupElement(S, 1, (1,3,2), 1);;

gap> CongruenceClassOfElement(cong, elm);

{(1,(1,3,2),1)}

8.2.2 CongruenceClasses

. CongruenceClasses(cong) (attribute)

Returns: The classes of congruence.

When cong is a congruence of semigroup, this attribute is synonymous with

EquivalenceClasses.

The return value is a list containing all the equivalence classes of the semigroup congruence cong .
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(),(1,3,2)],[(1,2),0]]);;

gap> cong := CongruencesOfSemigroup(S)[3];;

gap> classes := CongruenceClasses(cong);;

gap> Size(classes);

9

8.2.3 NrCongruenceClasses

. NrCongruenceClasses(cong) (attribute)

Returns: A positive integer.

This attribute describes the number of congruence classes in the semigroup congruence cong .
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(),(1,3,2)],[(1,2),0]]);;

Semigroups 137

gap> cong := CongruencesOfSemigroup(S)[3];;

gap> NrCongruenceClasses(cong);

9

8.2.4 CongruencesOfSemigroup

. CongruencesOfSemigroup(S) (attribute)

Returns: The congruences of a semigroup.

This attribute gives a list of the congruences of the semigroup S .

At present this only works for simple and 0-simple semigroups.

Example
gap> s := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(),(1,3,2)],[(1,2),0]]);;

gap> congs := CongruencesOfSemigroup(s);

[<universal semigroup congruence over

<Rees 0-matrix semigroup 2x2 over Sym([1 .. 3])>>,

<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with linked triple (1,2,2)>,

<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with linked triple (3,2,2)>,

<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with linked triple (S3,2,2)>]

8.2.5 AsLookupTable

. AsLookupTable(cong) (attribute)

Returns: A list.

This attribute describes the semigroup congruence cong as a list of positive integers with length

the size of the semigroup over which cong is de�ned.

Each position in the list corresponds to an element of the semigroup (in the order de�ned by

SSortedList) and the integer at that position is a unique identi�er for that element's congruence

class under cong . Hence, two elements are congruent if and only if they have the same number at

their two positions in the list.

Example
gap> s := Monoid([Transformation([1, 2, 2]),

> Transformation([3, 1, 3])]);;

gap> cong := SemigroupCongruence(s,

> [Transformation([1,2,1]),Transformation([2,1,2])]);;

gap> AsLookupTable(cong);

[1, 2, 3, 4, 5, 6, 3, 2, 1, 6, 5, 1]

8.3 Congruences on Rees matrix semigroups

This section describes the implementation of congruences of simple and 0-simple semigroups in the

Semigroups package, and the functions associated with them. This code and this part of the manual

were written by Michael Torpey. Most of the theorems used in this chapter are from Section 3.5 of

[How95].

Semigroups 138

By the Rees Theorem, any 0-simple semigroup S is isomorphic to a Rees 0-matrix semigroup (see

(Reference: Rees Matrix Semigroups)) over a group, with a regular sandwich matrix. That is,

S�=M 0[G; I;L;P];

where G is a group, L and I are non-empty sets, and P is regular in the sense that it has no rows or

columns consisting soley of zeroes.

The congruences of a Rees 0-matrix semigroup are in 1-1 correspondence with the linked triple,

which is a triple of the form [N,S,T] where:

� N is a normal subgroup of the underlying group G,

� S is an equivalence relation on the columns of P,

� T is an equivalence relation on the rows of P,

satisfying the following conditions:

� a pair of S-related columns must contain zeroes in precisely the same rows,

� a pair of T-related rows must contain zeroes in precisely the same columns,

� if i and j are S-related, k and l are T-related and the matrix entries pk;i; pk; j; pl;i; pl; j 6= 0, then

qk;l;i; j 2 N, where

qk;l;i; j = pk;ip
�1
l;i pl; jp

�1
k; j :

By Theorem 3.5.9 in [How95], for any �nite 0-simple Rees 0-matrix semigroup, there is a bijection

between its non-universal congruences and its linked triples. In this way, we can internally represent

any congruence of such a semigroup by storing its associated linked triple instead of a set of generating

pairs, and thus perform many calculations on it more ef�ciently.

If a congruence is de�ned by a linked triple (N,S,T), then a single class of that congruence can

be de�ned by a triple (Nx,i/S,k/S), where Nx is a right coset of N, i/S is the equivalence class of i

in S, and k/S is the equivalence class of k in T. Thus we can internally represent any class of such a

congruence as a triple simply consisting of a right coset and two positive integers.

An analogous condition exists for �nite simple Rees matrix semigroups without zero.

8.3.1 IsRMSCongruenceByLinkedTriple

. IsRMSCongruenceByLinkedTriple(obj) (category)

. IsRZMSCongruenceByLinkedTriple(obj) (category)

Returns: true or false.

These categories describe a type of semigroup congruence over a Rees matrix or 0-matrix semi-

group. Externally, an object of this type may be used in the same way as any other object in the

category IsSemigroupCongruence (Reference: IsSemigroupCongruence) but it is represented in-

ternally by its linked triple, and certain functions may take advantage of this information to reduce

computation times.

An object of this type may be constructed with RMSCongruenceByLinkedTriple or

RZMSCongruenceByLinkedTriple, or this representation may be selected automatically by

SemigroupCongruence (8.1.1).

Semigroups 139

Example
gap> G := Group([(1,4,5), (1,5,3,4)]);;

gap> mat := [[0, 0, (1,4,5), 0, 0, (1,4,3,5)],

> [0, (), 0, 0, (3,5), 0],

> [(), 0, 0, (3,5), 0, 0]];;

gap> S := ReesZeroMatrixSemigroup(G, mat);;

gap> N := Group([(1,4)(3,5), (1,5)(3,4)]);;

gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;

gap> rowBlocks := [[1], [2], [3]];;

gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;

gap> IsRZMSCongruenceByLinkedTriple(cong);

true

8.3.2 RMSCongruenceByLinkedTriple

. RMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)

. RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)

Returns: A Rees matrix or 0-matrix semigroup congruence by linked triple.

This function returns a semigroup congruence over the Rees matrix or 0-matrix semigroup S

corresponding to the linked triple (N , colBlocks , rowBlocks). The argument N should be a normal

subgroup of the underlying semigroup of S ; colBlocks should be a partition of the columns of the

matrix of S ; and rowBlocks should be a partition of the rows of the matrix of S . For example, if the

matrix has 5 rows, then a possibility for rowBlocks might be [[1,3], [2,5], [4]].

If the arguments describe a valid linked triple on S , then an object in the category

IsRZMSCongruenceByLinkedTriple is returned. This object can be used like any other semigroup

congruence in GAP.

If the arguments describe a triple which is not linked in the sense described above, then this

function returns an error.
Example

gap> G := Group([(1,4,5), (1,5,3,4)]);;

gap> mat := [[0, 0, (1,4,5), 0, 0, (1,4,3,5)],

> [0, (), 0, 0, (3,5), 0],

> [(), 0, 0, (3,5), 0, 0]];;

gap> S := ReesZeroMatrixSemigroup(G, mat);;

gap> N := Group([(1,4)(3,5), (1,5)(3,4)]);;

gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;

gap> rowBlocks := [[1], [2], [3]];;

gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);

<semigroup congruence over <Rees 0-matrix semigroup 6x3 over

Group([(1,4,5), (1,5,3,4)])> with linked triple (2^2,4,3)>

8.3.3 RMSCongruenceClassByLinkedTriple

. RMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)

. RZMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)

Returns: A Rees matrix or 0-matrix semigroup congruence class by linked triple.

This operation returns one congruence class of the congruence cong , as de�ned by the other three

parameters.

Semigroups 140

The argument cong must be a Rees matrix or 0-matrix semigroup congruence by linked triple.

If the linked triple consists of the three parameters N, colBlocks and rowBlocks, then nCoset

must be a right coset of N, colClass must be a positive integer corresponding to a position in the

list colBlocks, and rowClass must be a positive integer corresponding to a position in the list

rowBlocks.

If the arguments are valid, an IsRMSCongruenceClassByLinkedTriple or

IsRZMSCongruenceClassByLinkedTriple object is returned, which can be used like any

other equivalence class in GAP. Otherwise, an error is returned.
Example

gap> g := Group([(1,4,5), (1,5,3,4)]);;

gap> mat := [[0, 0, (1,4,5), 0, 0, (1,4,3,5)],

> [0, (), 0, 0, (3,5), 0],

> [(), 0, 0, (3,5), 0, 0]];;

gap> s := ReesZeroMatrixSemigroup(g, mat);;

gap> n := Group([(1,4)(3,5), (1,5)(3,4)]);;

gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;

gap> rowBlocks := [[1], [2], [3]];;

gap> cong := RZMSCongruenceByLinkedTriple(s, n, colBlocks, rowBlocks);;

gap> class := RZMSCongruenceClassByLinkedTriple(cong,

> RightCoset(n,(1,5)),2,3);

{(2,(3,4),3)}

8.3.4 IsLinkedTriple

. IsLinkedTriple(S, N, colBlocks, rowBlocks) (operation)

Returns: true or false.

This operation returns true if and only if the arguments (N , colBlocks , rowBlocks) describe a

linked triple of the Rees matrix or 0-matrix semigroup S , as described above.
Example

gap> G := Group([(1,4,5), (1,5,3,4)]);;

gap> mat := [[0, 0, (1,4,5), 0, 0, (1,4,3,5)],

> [0, (), 0, 0, (3,5), 0],

> [(), 0, 0, (3,5), 0, 0]];;

gap> S := ReesZeroMatrixSemigroup(G, mat);;

gap> N := Group([(1,4)(3,5), (1,5)(3,4)]);;

gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;

gap> rowBlocks := [[1], [2], [3]];;

gap> IsLinkedTriple(S, N, colBlocks, rowBlocks);

true

8.3.5 CanonicalRepresentative

. CanonicalRepresentative(class) (attribute)

Returns: A congruence class.

This attribute gives a canonical representative for the semigroup congruence class class . This

representative can be used to identify a class uniquely.

At present this only works for simple and 0-simple semigroups.
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(),(1,3,2)],[(1,2),0]]);;

Semigroups 141

gap> cong := CongruencesOfSemigroup(S)[3];;

gap> class := CongruenceClasses(cong)[3];;

gap> CanonicalRepresentative(class);

(1,(1,2,3),2)

8.3.6 AsSemigroupCongruenceByGeneratingPairs

. AsSemigroupCongruenceByGeneratingPairs(cong) (operation)

Returns: A semigroup congruence.

This operation takes cong , a semigroup congruence, and returns the same congruence relation,

but described by GAP's default method of de�ning semigroup congruences: a set of generating pairs

for the congruence.

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(),(1,3,2)],[(1,2),0]]);;

gap> cong := CongruencesOfSemigroup(S)[3];;

gap> AsSemigroupCongruenceByGeneratingPairs(cong);

<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with 3 generating pairs>

8.3.7 AsRMSCongruenceByLinkedTriple

. AsRMSCongruenceByLinkedTriple(cong) (operation)

. AsRZMSCongruenceByLinkedTriple(cong) (operation)

Returns: A Rees matrix or 0-matrix semigroup congruence by linked triple.

This operation takes a semigroup congruence cong over a �nite simple or 0-simple Rees 0-matrix

semigroup, and returns that congruence relation in a new form: as either a congruence by linked triple,

or a universal congruence.

If the congruence is not de�ned over an appropriate type of semigroup, then this function returns

an error.
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(),(1,3,2)],[(1,2),0]]);;

gap> x := ReesZeroMatrixSemigroupElement(S, 1, (1,3,2), 1);;

gap> y := ReesZeroMatrixSemigroupElement(S, 1, (), 1);;

gap> cong := SemigroupCongruenceByGeneratingPairs(S, [[x,y]]);;

gap> AsRZMSCongruenceByLinkedTriple(cong);

<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with linked triple (3,2,2)>

8.3.8 MeetSemigroupCongruences

. MeetSemigroupCongruences(c1, c2) (operation)

Returns: A semigroup congruence.

This operation returns the meet of the two semigroup congruences c1 and c2 � that is, the largest

semigroup congruence contained in both c1 and c2 .

At present this only works for simple and 0-simple semigroups.

Semigroups 142

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(),(1,3,2)],[(1,2),0]]);;

gap> congs := CongruencesOfSemigroup(S);;

gap> MeetSemigroupCongruences(congs[2], congs[3]);

<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with linked triple (1,2,2)>

8.3.9 JoinSemigroupCongruences

. JoinSemigroupCongruences(c1, c2) (operation)

Returns: A semigroup congruence.

This operation returns the join of the two semigroup congruences c1 and c2 � that is, the smallest

semigroup congruence containing all the relations in both c1 and c2 .

At present this only works for simple and 0-simple semigroups.

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(),(1,3,2)],[(1,2),0]]);;

gap> congs := CongruencesOfSemigroup(S);;

gap> JoinSemigroupCongruences(congs[2], congs[3]);

<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with linked triple (3,2,2)>

8.4 Universal congruences

The linked triples of a completely 0-simple Rees 0-matrix semigroup describe only its non-universal

congruences. In any one of these, the zero element of the semigroup is related only to itself. However,

for any semigroup S the universal relation S�S is a congruence; called the universal congruence. The

universal congruence on a semigroup has its own unique representation.

Since many things we want to calculate about congruences are trivial in the case

of the universal congruence, this package contains a category speci�cally designed for it,

IsUniversalSemigroupCongruence. We also de�ne IsUniversalSemigroupCongruenceClass,

which represents the single congruence class of the universal congruence.

8.4.1 IsUniversalSemigroupCongruence

. IsUniversalSemigroupCongruence(obj) (category)

Returns: true or false.

This category describes a type of semigroup congruence, which must refer to the universal semi-

group congruence S�S. Externally, an object of this type may be used in the same way as any other

object in the category IsSemigroupCongruence (Reference: IsSemigroupCongruence).

An object of this type may be constructed with UniversalSemigroupCongruence or this repre-

sentation may be selected automatically as an alternative to an IsRZMSCongruenceByLinkedTriple

object (since the universal congruence cannot be represented by a linked triple).

Example
gap> S := Semigroup([Transformation([3, 2, 3])]);;

gap> U := UniversalSemigroupCongruence(S);;

Semigroups 143

gap> IsUniversalSemigroupCongruence(U);

true

8.4.2 UniversalSemigroupCongruence

. UniversalSemigroupCongruence(S) (operation)

Returns: A universal semigroup congruence.

This operation returns the universal semigroup congruence for the semigroup S . It can be used in

the same way as any other semigroup congruence object.

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[(),(1,3,2)],[(1,2),0]]);;

gap> UniversalSemigroupCongruence(S);

<universal semigroup congruence over

<Rees 0-matrix semigroup 2x2 over Sym([1 .. 3])>>

Chapter 9

Homomorphisms

In this chapter we describe the various ways to de�ne a homomorphism from a semigroup to another

semigroup.

Support for homomorphisms in Semigroups is currently rather limited but there are plans to

improve this in the future.

9.1 Isomorphisms

9.1.1 IsIsomorphicSemigroup

. IsIsomorphicSemigroup(S, T) (operation)

Returns: true or false.

This operation attempts to determine if the semigroups S and T are isomorphic, it returns true if

they are and false if they are not.

At present this only works for rather small semigroups, with approximately 50 elements or less.

PLEASE NOTE: the Grape package version 4.5 or higher must be available and compiled installed

for this function to work.
Example

gap> S:=Semigroup([PartialPerm([1, 2, 4], [3, 5, 1]),

> PartialPerm([1, 3, 5], [4, 3, 2])]);;

gap> Size(S);

11

gap> T:=SemigroupByMultiplicationTable(SmallestMultiplicationTable(S));;

gap> IsIsomorphicSemigroup(S, T);

true

9.1.2 SmallestMultiplicationTable

. SmallestMultiplicationTable(S) (attribute)

Returns: The lex-least multiplication table of a semigroup.

This function returns the lex-least multiplication table of a semigroup isomorphic to the semigroup

S . SmallestMultiplicationTable is an isomorphism invariant of semigroups, and so it can, for

example, be used to check if two semigroups are isomorphic.

Due to the high complexity of computing the smallest multiplication table of a semigroup, this

function only performs well for semigroups with at most approximately 50 elements.

144

http://www.maths.qmul.ac.uk/~leonard/grape/

Semigroups 145

SmallestMultiplicationTable is based on the function IdSmallSemigroup (Smallsemi:

IdSmallSemigroup) by Andreas Distler.

PLEASE NOTE: the Grape package version 4.5 or higher must be loaded for this function to work.

Example
gap> S:=Semigroup(

> Bipartition([[1, 2, 3, -1, -3], [-2]]),

> Bipartition([[1, 2, 3, -1], [-2], [-3]]),

> Bipartition([[1, 2, 3], [-1], [-2, -3]]),

> Bipartition([[1, 2, -1], [3, -2], [-3]]));;

gap> Size(S);

8

gap> SmallestMultiplicationTable(S);

[[1, 1, 3, 4, 5, 6, 7, 8], [1, 1, 3, 4, 5, 6, 7, 8],

[1, 1, 3, 4, 5, 6, 7, 8], [1, 3, 3, 4, 5, 6, 7, 8],

[5, 5, 6, 7, 5, 6, 7, 8], [5, 5, 6, 7, 5, 6, 7, 8],

[5, 6, 6, 7, 5, 6, 7, 8], [5, 6, 6, 7, 5, 6, 7, 8]]

9.1.3 IsomorphismSemigroups

. IsomorphismSemigroups(S, T) (operation)

Returns: An isomorphism or fail.

This operation returns an isomorphism from the semigroup S and to the semigroup T if it exists,

and it returns fail if it does not.

At present this only works for Rees matrix semigroups and Rees 0-matrix semigroups.

PLEASE NOTE: the Grape package version 4.5 or higher must be available and compiled for this

function to work, when the argument R is a Rees 0-matrix semigroup.

Example
gap> S:=PrincipalFactor(DClasses(FullTransformationMonoid(5))[2]);

<Rees 0-matrix semigroup 10x5 over Group([(1,2,3,4), (1,2)])>

gap> T:=PrincipalFactor(DClasses(PartitionMonoid(5))[2]);

<Rees 0-matrix semigroup 15x15 over Group([(2,3,4,5), (4,5)])>

gap> IsomorphismSemigroups(S, T);

fail

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

Chapter 10

Orbits

10.1 Looking for something in an orbit

The functions described in this section supplement the Orb package by providing methods for �nding

something in an orbit, with the possibility of continuing the orbit enumeration at some later point.

10.1.1 EnumeratePosition

. EnumeratePosition(o, val[, onlynew]) (function)

Returns: A positive integer or fail.

This function returns the position of the value val in the orbit o . If o is closed, then this is

equivalent to doing Position(o, val). However, if o is open, then the orbit is enumerated until

val is found, in which case the position of val is returned, or the enumeration ends, in which case

fail is returned.

If the optional argument onlynew is present, it should be true or false. If onlynew is true,

then val will only be checked against new points in o . Otherwise, every point in the o , not only the

new ones, is considered.

10.1.2 LookForInOrb

. LookForInOrb(o, func, start) (function)

Returns: false or a positive integer.

The arguments of this function should be an orbit o , a function func which gets the orbit object

and a point in the orbit as arguments, and a positive integer start . The function func will be called

for every point in o starting from start (inclusive) and the orbit will be enumerated until func

returns true or the enumeration ends. In the former case, the position of the �rst point in o for which

func returns true is returned, and in the latter false is returned.
Example

gap> o:=Orb(SymmetricGroup(100), 1, OnPoints);

<open Int-orbit, 1 points>

gap> func:=function(o, x) return x=42; end;

function(o, x) ... end

gap> LookForInOrb(o, func, 1);

42

gap> o;

<open Int-orbit, 42 points>

146

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html

Semigroups 147

10.2 Strongly connected components of orbits

The functions described in this section supplement the Orb package by providing methods for opera-

tions related to strongly connected components of orbits.

If any of the functions is applied to an open orbit, then the orbit is completely enumerated before

any further calculation is performed. It is not possible to calculate the strongly connected components

of an orbit of a semigroup acting on a set until the entire orbit has been found.

10.2.1 OrbSCC

. OrbSCC(o) (function)

Returns: The strongly connected components of an orbit.

If o is an orbit created by the Orb package with the option orbitgraph=true, then OrbSCC

returns a set of sets of positions in o corresponding to its strongly connected components.

See also OrbSCCLookup (10.2.2) and OrbSCCTruthTable (10.2.3).

Example
gap> S:=FullTransformationSemigroup(4);;

gap> o:=LambdaOrb(S);

<open orbit, 1 points with Schreier tree with log>

gap> OrbSCC(o);

[[1], [2], [3, 4, 5, 6], [7, 8, 9, 10, 11, 12],

[13, 14, 15, 16]]

10.2.2 OrbSCCLookup

. OrbSCCLookup(o) (function)

Returns: A lookup table for the strongly connected components of an orbit.

If o is an orbit created by the Orb package with the option orbitgraph=true, then

OrbSCCLookup returns a lookup table for its strongly connected components. More precisely,

OrbSCCLookup(o)[i] equals the index of the strongly connected component containing o[i].

See also OrbSCC (10.2.1) and OrbSCCTruthTable (10.2.3).
Example

gap> S:=FullTransformationSemigroup(4);;

gap> o:=LambdaOrb(S);;

gap> OrbSCC(o);

[[1], [2], [3, 4, 5, 6], [7, 8, 9, 10, 11, 12],

[13, 14, 15, 16]]

gap> OrbSCCLookup(o);

[1, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5]

gap> OrbSCCLookup(o)[1]; OrbSCCLookup(o)[4]; OrbSCCLookup(o)[7];

1

3

4

10.2.3 OrbSCCTruthTable

. OrbSCCTruthTable(o) (function)

Returns: Truth tables for strongly connected components of an orbit.

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html

Semigroups 148

If o is an orbit created by the Orb package with the option orbitgraph=true, then

OrbSCCTruthTable returns a list of boolean lists such that OrbSCCTruthTable(o)[i][j] is true

if j belongs to OrbSCC(o)[i].

See also OrbSCC (10.2.1) and OrbSCCLookup (10.2.2).

Example
gap> S:=FullTransformationSemigroup(4);;

gap> o:=LambdaOrb(S);;

gap> OrbSCC(o);

[[1], [2], [3, 4, 5, 6], [7, 8, 9, 10, 11, 12],

[13, 14, 15, 16]]

gap> OrbSCCTruthTable(o);

[[true, false, false, false, false, false, false, false, false,

false, false, false, false, false, false, false],

[false, true, false, false, false, false, false, false, false,

false, false, false, false, false, false, false],

[false, false, true, true, true, true, false, false, false, false,

false, false, false, false, false, false],

[false, false, false, false, false, false, true, true, true, true,

true, true, false, false, false, false],

[false, false, false, false, false, false, false, false, false,

false, false, false, true, true, true, true]]

10.2.4 ReverseSchreierTreeOfSCC

. ReverseSchreierTreeOfSCC(o, i) (function)

Returns: The reverse Schreier tree corresponding to the i th strongly connected component of

an orbit.

If o is an orbit created by the Orb package with the option orbitgraph=true and action act,

and i is a positive integer, then ReverseSchreierTreeOfSCC(o, i) returns a pair [gen, pos]

of lists with Length(o) entries such that

Example
act(o[j], o!.gens[gen[j]])=o[pos[j]].

The pair [gen, pos] corresponds to a tree with root OrbSCC(o)[i][1] and a path from every

element of OrbSCC(o)[i] to the root.

See also OrbSCC (10.2.1), TraceSchreierTreeOfSCCBack (10.2.6), SchreierTreeOfSCC

(10.2.5), and TraceSchreierTreeOfSCCForward (10.2.7).
Example

gap> S:=Semigroup(Transformation([2, 2, 1, 4, 4]),

> Transformation([3, 3, 3, 4, 5]),

> Transformation([5, 1, 4, 5, 5]));;

gap> o:=Orb(S, [1..4], OnSets, rec(orbitgraph:=true, schreier:=true));;

gap> OrbSCC(o);

[[1], [2], [3, 5, 6, 7, 11], [4], [8], [9], [10, 12]]

gap> ReverseSchreierTreeOfSCC(o, 3);

[[,, fail,, 2, 1, 2,,,, 1], [,, fail,, 3, 5, 3,,,, 7]]

gap> ReverseSchreierTreeOfSCC(o, 7);

[[,,,,,,,,, fail,, 3], [,,,,,,,,, fail,, 10]]

gap> OnSets(o[11], Generators(S)[1]);

[1, 4]

Semigroups 149

gap> Position(o, last);

7

10.2.5 SchreierTreeOfSCC

. SchreierTreeOfSCC(o, i) (function)

Returns: The Schreier tree corresponding to the i th strongly connected component of an orbit.

If o is an orbit created by the Orb package with the option orbitgraph=true and action act,

and i is a positive integer, then SchreierTreeOfSCC(o, i) returns a pair [gen, pos] of lists

with Length(o) entries such that

Example
act(o[pos[j]], o!.gens[gen[j]])=o[j].

The pair [gen, pos] corresponds to a tree with root OrbSCC(o)[i][1] and a path from the root

to every element of OrbSCC(o)[i].

See also OrbSCC (10.2.1), TraceSchreierTreeOfSCCBack (10.2.6),

ReverseSchreierTreeOfSCC (10.2.4), and TraceSchreierTreeOfSCCForward (10.2.7).
Example

gap> S:=Semigroup(Transformation([2, 2, 1, 4, 4]),

> Transformation([3, 3, 3, 4, 5]),

> Transformation([5, 1, 4, 5, 5]));;

gap> o:=Orb(S, [1..4], OnSets, rec(orbitgraph:=true, schreier:=true));;

gap> OrbSCC(o);

[[1], [2], [3, 5, 6, 7, 11], [4], [8], [9], [10, 12]]

gap> SchreierTreeOfSCC(o, 3);

[[,, fail,, 1, 3, 1,,,, 2], [,, fail,, 7, 5, 3,,,, 6]]

gap> SchreierTreeOfSCC(o, 7);

[[,,,,,,,,, fail,, 1], [,,,,,,,,, fail,, 10]]

gap> OnSets(o[6], Generators(S)[2]);

[3, 5]

gap> Position(o, last);

11

10.2.6 TraceSchreierTreeOfSCCBack

. TraceSchreierTreeOfSCCBack(orb, m, nr) (operation)

Returns: A word in the generators.

orb must be an orbit object with a Schreier tree and orbit graph, that is, the options schreier

and orbitgraph must have been set to true during the creation of the orbit, m must be the number

of a strongly connected component of orb , and nr must be the number of a point in the m th strongly

connect component of orb .

This operation traces the result of ReverseSchreierTreeOfSCC (10.2.4) and with arguments

orb and m and returns a word in the generators that maps the point with number nr to the �rst

point in the m th strongly connected component of orb . Here, a word is a list of integers, where

positive integers are numbers of generators. See also OrbSCC (10.2.1), ReverseSchreierTreeOfSCC

(10.2.4), SchreierTreeOfSCC (10.2.5), and TraceSchreierTreeOfSCCForward (10.2.7).
Example

gap> S:=Semigroup(Transformation([1, 3, 4, 1]),

> Transformation([2, 4, 1, 2]),

Semigroups 150

> Transformation([3, 1, 1, 3]),

> Transformation([3, 3, 4, 1]));;

gap> o:=Orb(S, [1..4], OnSets, rec(orbitgraph:=true, schreier:=true));;

gap> OrbSCC(o);

[[1], [2], [3], [4, 5, 6, 7, 8], [9, 10, 11, 12]]

gap> ReverseSchreierTreeOfSCC(o, 4);

[[,,, fail, 4, 1, 1, 3], [,,, fail, 4, 4, 4, 4]]

gap> TraceSchreierTreeOfSCCBack(o, 4, 7);

[1]

gap> TraceSchreierTreeOfSCCBack(o, 4, 8);

[3]

10.2.7 TraceSchreierTreeOfSCCForward

. TraceSchreierTreeOfSCCForward(orb, m, nr) (operation)

Returns: A word in the generators.

orb must be an orbit object with a Schreier tree and orbit graph, that is, the options schreier

and orbitgraph must have been set to true during the creation of the orbit, m must be the number

of a strongly connected component of orb , and nr must be the number of a point in the m th strongly

connect component of orb .

This operation traces the result of SchreierTreeOfSCC (10.2.5) and with arguments orb and

m and returns a word in the generators that maps the �rst point in the m th strongly connected com-

ponent of orb to the point with number nr . Here, a word is a list of integers, where positive inte-

gers are numbers of generators. See also OrbSCC (10.2.1), ReverseSchreierTreeOfSCC (10.2.4),

SchreierTreeOfSCC (10.2.5), and TraceSchreierTreeOfSCCBack (10.2.6).
Example

gap> S:=Semigroup(Transformation([1, 3, 4, 1]),

> Transformation([2, 4, 1, 2]),

> Transformation([3, 1, 1, 3]),

> Transformation([3, 3, 4, 1]));;

gap> o:=Orb(S, [1..4], OnSets, rec(orbitgraph:=true, schreier:=true));;

gap> OrbSCC(o);

[[1], [2], [3], [4, 5, 6, 7, 8], [9, 10, 11, 12]]

gap> SchreierTreeOfSCC(o, 4);

[[,,, fail, 1, 2, 2, 4], [,,, fail, 4, 4, 6, 4]]

gap> TraceSchreierTreeOfSCCForward(o, 4, 8);

[4]

gap> TraceSchreierTreeOfSCCForward(o, 4, 7);

[2, 2]

References

[ABMN10] J. Araújo, P. V. Bünau, J. D. Mitchell, and M. Neunhöffer. Computing automorphisms of

semigroups. J. Symbolic Comput., 45(3):373�392, 2010. 7, 71

[ABMS14] J. Araújo, W. Bentz, J. D. Mitchell, and Csaba Schneider. The rank of the semigroup of

transformations stabilising a partition of a �nite set. in preparation, March 2014. 22

[FL98] D.G. Fitzgerald and J. Leech. Dual symmetric inverse monoids and representation theory.

J. Austral. Math. Soc. A, 64:345�67, 1998. 21, 106

[GGR68] N. Graham, R. Graham, and J. Rhodes. Maximal subsemigroups of �nite semigroups. J.

Combinatorial Theory, 4:203�209, 1968. 7, 63, 64

[How95] John M. Howie. Fundamentals of semigroup theory, volume 12 of London Mathematical

Society Monographs. New Series. The Clarendon Press Oxford University Press, New

York, 1995. Oxford Science Publications. 7, 76, 87, 122, 125, 137, 138

[HR05] Tom Halverson and Arun Ram. Partition algebras. European Journal of Combinatorics,

26(6):869�921, 2005. 101

[Sch92] Boris M. Schein. The minimal degree of a �nite inverse semigroup. Trans. Amer. Math.

Soc., 333(2):877�888, 1992. 7, 94

151

Index

* (for bipartitions), 108

\<

for Green's classes, 46

< (for bipartitions), 108

= (for bipartitions), 108

\^

for an matrix over �nite �eld group and ma-

trix over �nite �eld, 133

ApsisMonoid, 25

AsBipartition, 104

AsBipartitionSemigroup, 19

AsBlockBijection, 106

AsBlockBijectionSemigroup, 19

AsLookupTable, 137

AsMatrix

for a matrix over �nite �eld, 132

AsMatrixGroup, 134

AsMatrixSemigroup, 19

AsPartialPerm

for a bipartition, 107

AsPartialPermSemigroup, 19

AsPermutation

for a bipartition, 107

AsRMSCongruenceByLinkedTriple, 141

AsRZMSCongruenceByLinkedTriple, 141

AsSemigroupCongruenceByGenerating-

Pairs, 141

AsTransformation

for a bipartition, 106

AsTransformationSemigroup, 19

BaseDomain

for a matrix over �nite �eld, 132

Bipartition, 102

BipartitionByIntRep, 102

BipartitionFamily, 101

BlocksNC, 115

BrauerMonoid, 23

CanonicalForm

for a free inverse semigroup element, 124

CanonicalRepresentative, 140

CharacterTableOfInverseSemigroup, 95

ClosureInverseSemigroup, 14

ClosureSemigroup, 14

ComponentRepsOfPartialPermSemigroup, 69

ComponentRepsOfTransformation-

Semigroup, 68

ComponentsOfPartialPermSemigroup, 70

ComponentsOfTransformationSemigroup, 68

CongruenceClasses, 136

CongruenceClassOfElement, 136

CongruencesOfSemigroup, 137

ConstructingFilter

for a matrix over �nite �eld, 133

CrossedApsisMonoid, 25

CyclesOfPartialPerm, 70

CyclesOfPartialPermSemigroup, 70

CyclesOfTransformationSemigroup, 69

DClass, 38

DClasses, 41

DClassNC, 39

DClassOfHClass, 37

DClassOfLClass, 37

DClassOfRClass, 37

DClassReps, 45

DegreeOfBipartition, 110

DegreeOfBipartitionCollection, 110

DegreeOfBipartitionSemigroup, 121

DegreeOfBlocks, 116

DegreeOfMatrixOverFiniteField

for a matrix over �nite �eld, 132

DotDClasses, 97

for a semigroup, 97

DotSemilatticeOfIdempotents, 98

DualSymmetricInverseMonoid, 24

DualSymmetricInverseSemigroup, 24

152

Semigroups 153

EndomorphismsPartition, 22

EnumeratePosition, 146

EvaluateWord, 35

ExtRepOfBipartition, 110

ExtRepOfBlocks, 115

FactorisableDualSymmetricInverse-

Semigroup, 24

Factorization, 36

FreeBand

for a given rank, 125

for a list of names, 125

for various names, 125

FreeInverseSemigroup

for a given rank, 123

for a list of names, 123

for various names, 123

FullMatrixSemigroup, 26

GeneralLinearSemigroup, 26

Generators, 57

GeneratorsOfSemigroupIdeal, 33

GeneratorsSmallest

for a transformation semigroup, 72

GLS, 26

GreensDClasses, 41

GreensDClassOfElement, 38

for a free band and a free band element, 127

GreensDClassOfElementNC, 39

GreensHClasses, 41

GreensHClassOfElement, 38

for a Rees matrix semigroup, 38

GreensHClassOfElementNC, 39

GreensJClasses, 41

GreensLClasses, 41

GreensLClassOfElement, 38

GreensLClassOfElementNC, 39

GreensRClasses, 41

GreensRClassOfElement, 38

GreensRClassOfElementNC, 39

GroupHClass, 40

GroupOfUnits, 58

HClass, 38

for a Rees matrix semigroup, 38

HClasses, 41

HClassNC, 39

HClassReps, 45

IdempotentGeneratedSubsemigroup, 61

Idempotents, 59

IdentityBipartition, 102

InfoSemigroups, 9

InjectionPrincipalFactor, 47

InverseLeftBlocks, 117

InverseRightBlocks, 117

InverseSubsemigroupByProperty, 16

IrredundantGeneratingSubset, 62

IsAperiodicSemigroup, 81

IsBand, 73

IsBipartition, 101

IsBipartitionCollection, 101

IsBipartitionMonoid, 119

IsBipartitionSemigroup, 119

IsBipartitionSemigroupGreensClass, 55

IsBlockBijection, 114

IsBlockBijectionMonoid, 120

IsBlockBijectionSemigroup, 120

IsBlockGroup, 74

IsBrandtSemigroup, 86

IsCliffordSemigroup, 86

IsCombinatorialSemigroup, 81

IsCommutativeSemigroup, 75

IsCompletelyRegularSemigroup, 75

IsCompletelySimpleSemigroup, 83

IsCongruenceFreeSemigroup, 76

IsDTrivial, 81

IsDualTransBipartition, 113

IsEUnitaryInverseSemigroup, 87

IsFactorisableSemigroup, 88

IsFreeBand

for a given semigroup, 126

IsFreeBandCategory, 126

IsFreeBandElement, 126

IsFreeBandSubsemigroup, 126

IsFreeInverseSemigroup, 123

IsFreeInverseSemigroupCategory, 123

IsFreeInverseSemigroupElement, 123

IsGreensClassNC, 55

IsGreensDLeq, 56

IsGroupAsSemigroup, 76

IsHTrivial, 81

IsIdempotentGenerated, 77

IsIsomorphicSemigroup, 144

IsJoinIrreducible, 88

IsLeftSimple, 77

Semigroups 154

IsLeftZeroSemigroup, 78

IsLinkedTriple, 140

IsLTrivial, 81

IsMajorantlyClosed, 89

IsMatrixMonoid, 129

IsMatrixOverFiniteField, 129

IsMatrixOverFiniteFieldCollection, 130

IsMatrixOverFiniteFieldGroup, 133

IsMatrixSemigroup, 129

IsMatrixSemigroupGreensClass, 56

IsMaximalSubsemigroup, 64

IsMonogenicInverseSemigroup, 90

IsMonogenicSemigroup, 78

IsMonoidAsSemigroup, 79

IsomorphismBipartitionMonoid, 20

IsomorphismBipartitionSemigroup, 20

IsomorphismBlockBijectionMonoid, 21

IsomorphismBlockBijectionSemigroup, 21

IsomorphismMatrixGroup, 134

IsomorphismMatrixSemigroup, 21

IsomorphismPermGroup, 19

IsomorphismReesMatrixSemigroup, 47

IsomorphismSemigroups, 145

IsOrthodoxSemigroup, 80

IsPartialPermBipartition, 113

IsPartialPermBipartitionMonoid, 120

IsPartialPermBipartitionSemigroup, 120

IsPartialPermSemigroupGreensClass, 55

IsPermBipartition, 113

IsPermBipartitionGroup, 121

IsRectangularBand, 80

IsRegularClass, 48

IsRegularSemigroup, 80

IsRightSimple, 77

IsRightZeroSemigroup, 81

IsRMSCongruenceByLinkedTriple, 138

IsRTrivial, 81

IsRZMSCongruenceByLinkedTriple, 138

IsSemiBand, 77

IsSemigroupWithAdjoinedZero, 82

IsSemigroupWithCommutingIdempotents, 74

IsSemilattice, 82

IsSimpleSemigroup, 83

IsSynchronizingSemigroup, 83

IsSynchronizingTransformation-

Collection, 83

IsTransBipartition, 112

IsTransformationSemigroupGreensClass,

55

IsTransitive

for a transformation semigroup and a pos int,

69

for a transformation semigroup and a set, 69

IsUniformBlockBijection, 114

IsUniversalSemigroupCongruence, 142

IsZeroGroup, 84

IsZeroRectangularBand, 84

IsZeroSemigroup, 85

IsZeroSimpleSemigroup, 85

IteratorFromGeneratorsFile, 11

IteratorOfDClasses, 43

IteratorOfDClassReps, 43

IteratorOfHClasses, 43

IteratorOfHClassReps, 43

IteratorOfLClasses, 43

IteratorOfLClassReps, 43

IteratorOfRClasses, 44

IteratorOfRClassReps, 43

JClasses, 41

JoinIrreducibleDClasses, 90

JoinSemigroupCongruences, 142

JonesMonoid, 23

LargestElementSemigroup, 72

LClass, 38

LClasses, 41

LClassNC, 39

LClassOfHClass, 37

LClassReps, 45

LeftBlocks, 111

LeftInverse

for a matrix over �nite �eld, 131

LeftOne

for a bipartition, 103

LeftProjection, 103

LeftZeroSemigroup, 31

LookForInOrb, 146

MajorantClosure, 91

MatrixSemigroup, 129

MaximalDClasses, 53

MaximalSubsemigroups

for a Rees (0-)matrix semigroup, and a

group, 64

Semigroups 155

for an acting semigroup, 63

MeetSemigroupCongruences, 141

MinimalDClass, 53

MinimalIdeal, 65

MinimalIdealGeneratingSet, 33

MinimalWord

for free inverse semigroup element, 125

Minorants, 91

ModularPartitionMonoid, 25

MonogenicSemigroup, 29

MultiplicativeNeutralElement

for an H-class, 54

MultiplicativeZero, 66

MunnSemigroup, 26

NaturalLeqBlockBijection, 108

NaturalLeqPartialPermBipartition, 108

NewIdentityMatrixOverFiniteField, 130

NewMatrixOverFiniteField

for a �lter, a �eld, an integer, and a list, 130

NewZeroMatrixOverFiniteField, 130

Normalizer

for a perm group, semigroup, record, 71

for a semigroup, record, 71

NrBlocks

for a bipartition, 112

for blocks, 112

NrCongruenceClasses, 136

NrDClasses, 50

NrHClasses, 50

NrIdempotents, 60

NrLClasses, 50

NrLeftBlocks, 111

NrRClasses, 50

NrRegularDClasses, 49

NrRightBlocks, 112

NrTransverseBlocks

for a bipartition, 110

for blocks, 115

OnLeftBlocks, 116

OnRightBlocks, 116

OnRightBlocksBipartitionByPerm, 109

OrbSCC, 147

OrbSCCLookup, 147

OrbSCCTruthTable, 147

OrderEndomorphisms

monoid of order preserving transformations,

27

PartialOrderOfDClasses, 51

PartialPermLeqBipartition, 108

PartialTransformationSemigroup, 23

PartitionMonoid, 22

PermLeftBlocks, 117

PermLeftQuoBipartition, 109

PermRightBlocks, 117

PlanarModularPartitionMonoid, 25

PlanarPartitionMonoid, 22

PlanarUniformBlockBijectionMonoid, 24

POI

monoid of order preserving partial perms, 27

POPI

monoid of orientation preserving partial

perms, 27

PrimitiveIdempotents, 92

PrincipalFactor, 48

Random

for a semigroup, 67

RandomBinaryRelationMonoid, 13

RandomBinaryRelationSemigroup, 13

RandomBipartition, 104

RandomBipartitionMonoid, 13

RandomBipartitionSemigroup, 13

RandomInverseMonoid, 12

RandomInverseSemigroup, 12

RandomMatrixMonoid, 13

RandomMatrixSemigroup, 13

RandomPartialPermMonoid, 13

RandomPartialPermSemigroup, 13

RandomTransformationMonoid, 12

RandomTransformationSemigroup, 12

RankOfBipartition, 110

RankOfBlocks, 115

RClass, 38

RClasses, 41

RClassNC, 39

RClassOfHClass, 37

RClassReps, 45

ReadGenerators, 10

RectangularBand, 29

RegularBinaryRelationSemigroup, 28

RegularDClasses, 49

Semigroups 156

RepresentativeOfMinimalDClass, 65

RepresentativeOfMinimalIdeal, 65

ReverseSchreierTreeOfSCC, 148

RightBlocks, 111

RightCosetsOfInverseSemigroup, 92

RightInverse

for a matrix over �nite �eld, 131

RightOne

for a bipartition, 103

RightProjection, 103

RightZeroSemigroup, 31

RMSCongruenceByLinkedTriple, 139

RMSCongruenceClassByLinkedTriple, 139

RowRank

for a matrix over �nite �eld, 131

RowSpaceBasis

for a matrix over �nite �eld, 131

RowSpaceTransformation

for a matrix over �nite �eld, 131

RowSpaceTransformationInv

for a matrix over �nite �eld, 131

RZMSCongruenceByLinkedTriple, 139

RZMSCongruenceClassByLinkedTriple, 139

SameMinorantsSubgroup, 93

SchreierTreeOfSCC, 149

SchutzenbergerGroup, 52

SemigroupCongruence, 135

SemigroupIdeal, 32

Semigroups package overview, 6

SemigroupsDir, 10

SemigroupsMakeDoc, 8

SemigroupsOptionsRec, 18

SemigroupsTestAll, 9

SemigroupsTestInstall, 9

SemigroupsTestManualExamples, 9

SingularApsisMonoid, 25

SingularBrauerMonoid, 23

SingularCrossedApsisMonoid, 25

SingularDualSymmetricInverseSemigroup,

24

SingularFactorisableDualSymmetric-

InverseSemigroup, 24

SingularJonesMonoid, 23

SingularModularPartitionMonoid, 25

SingularPartitionMonoid, 22

SingularPlanarModularPartitionMonoid,

25

SingularPlanarPartitionMonoid, 22

SingularPlanarUniformBlockBijection-

Monoid, 24

SingularTransformationMonoid, 28

SingularTransformationSemigroup, 28

SingularUniformBlockBijectionMonoid, 24

SLS, 26

SmallerDegreePartialPerm-

Representation, 94

SmallestElementSemigroup, 72

SmallestMultiplicationTable, 144

SmallGeneratingSet, 67

SmallInverseMonoidGeneratingSet, 67

SmallInverseSemigroupGeneratingSet, 67

SmallMonoidGeneratingSet, 67

SmallSemigroupGeneratingSet, 67

SpecialLinearSemigroup, 26

Splash, 96

Star, 103

StarOp, 103

StructureDescription

for an H-class, 56

StructureDescriptionMaximalSubgroups,

54

StructureDescriptionSchutzenberger-

Groups, 54

SubsemigroupByProperty

for a semigroup and function, 15

for a semigroup, function, and limit on the

size of the subsemigroup, 15

SupersemigroupOfIdeal, 34

TemperleyLiebMonoid, 23

TikzBipartition, 118

TikzBlocks, 119

TraceSchreierTreeOfSCCBack, 149

TraceSchreierTreeOfSCCForward, 150

TransposedMatImmutable

for a matrix over �nite �eld, 132

UnderlyingSemigroupOfSemigroupWith-

AdjoinedZero, 73

UniformBlockBijectionMonoid, 24

UniversalSemigroupCongruence, 143

VagnerPrestonRepresentation, 94

Semigroups 157

WriteGenerators, 10

ZeroSemigroup, 30

	The Semigroups package
	Introduction
	Installing the Semigroups package
	Compiling the documentation
	Testing the installation
	More information during a computation
	Reading and writing elements to a file

	Creating semigroups and monoids
	Random semigroups
	New semigroups from old
	Options when creating semigroups
	Changing the representation of a semigroup
	Standard examples

	Ideals
	Creating ideals
	Attributes of ideals

	 Determining the structure of a semigroup
	Expressing semigroup elements as words in generators
	Creating Green's classes
	Iterators and enumerators of classes and representatives
	Attributes and properties directly related to Green's classes
	Further attributes of semigroups
	Further properties of semigroups
	Properties and attributes of inverse semigroups
	Visualising the structure of a semigroup

	 Bipartitions and blocks
	The family and categories of bipartitions
	Creating bipartitions
	Changing the representation of a bipartition
	Operators for bipartitions
	Attributes for bipartitons
	Creating blocks and their attributes
	Actions on blocks
	Visualising blocks and bipartitions
	Semigroups of bipartitions

	Free inverse semigroups and free bands
	 Free inverse semigroups
	 Displaying free inverse semigroup elements
	Operators and operations for free inverse semigroup elements
	 Free bands
	Operators and operations for free band elements

	Matrix semigroups
	Creating matrix semigroups
	Matrices in the Semigroups package
	Matrix groups in the Semigroups package

	Congruences
	Creating congruences
	Congruence classes
	Congruences on Rees matrix semigroups
	Universal congruences

	Homomorphisms
	Isomorphisms

	 Orbits
	Looking for something in an orbit
	Strongly connected components of orbits

	References
	Index

